ANNUAL REPORT

GREAT LAKES FISHERY COMMISSION

GREAT LAKES FISHERY COMMISSION

Established by Convention between Canada and the United States for the Conservation of Great Lakes Fishery Resources

ANNUAL REPORT for the year 1982

COMMISSIONERS

P. S. Chamut	W. P. Horn
W. M. Lawrence	K. H. Loftus
H. A. Regier	C. Ver Duin
G. C. Vernon	Vacancy

1451 Green Road Ann Arbor, Michigan U.S.A. 1984

GREAT LAKES FISHERY COMMISSION

MEMBERS AND PERIOD OF SERVICE SINCE THE INCEPTION OF THE COMMISSION IN 1956

CANAD	A	UNITED ST	FATES
A. O. Blackhurst	1956-1968	J. L. Farley	1956-1956
W. J. K. Harkness	1956-1959	C. Ver Duin	1956-
A. L. Pritchard	1956-1971	L. P. Voigt	1956-1978
J. R. Dymond	1961-1964	D. L. McKernan	1957-1966
C. H. D. Clarke	1965-1972	C. F. Pautzke	1967-1968
E. W. Burridge	1967-1977	W. M. Lawrence	1968-
F. E. J. Fry	1969-1980	C. H. Meacham	1969-1970
C. J. Kerswill	1971-1978	N. P. Reed	1971-1977
K. H. Loftus	1972-	R. L. Herbst	1978-1981
M. G. Johnson	1978-1982	F. R. Lockard	1978-1981
H. D. Johnston	1979-1982	W. P. Horn	1982-
H. A. Regier	1980-		
G. C. Vernon	1982-		
P. S. Chamut	1982-		

1982 SECRETARIAT

C. M. Fetterolf, Jr., Executive Secretary
A. K. Lamsa, Assistant Executive Secretary
R. L. Eshenroder, Senior Scientist for Fishery Resources
M. A. Ross, Fishery Biologist
B. S. Staples, Administrative Officer
R. E. Koerber, Word Processing Supervisor

CONTENTS

Introduction
Annual Meeting Proceedings
Interim Meeting Proceedings11
Board of Technical Experts Report17
Summary of Management and Research
Great Lakes Fish Disease Control Committee Report
Summary of Trout, Splake, and Salmon Plantings
Sea Lamprey Control in the Great Lakes
Sea Lamprey and Related Research at National Fishery Research
Laboratory, Hammond Bay Biological Station, and Monell
Chemical Senses Center, 1982 110
Administrative Report for 1982 141

LETTER OF TRANSMITTAL

In accordance with Article IX of the Convention on Great Lakes Fisheries, I take pleasure in submitting to the Contracting Parties an Annual Report of the activities of the Great Lakes Fishery Commission in 1982.

> Respectfully, K. H. Loftus, Chairman

INTRODUCTION

A Convention on Great Lakes Fisheries, ratified by the Governments of the United States and Canada in 1955 provided for the establishment of the Great Lakes Fishery Commission.

The Commission was given the responsibilities of formulating and coordinating fishery research and management programs, advising governments on measures to improve the fisheries, and implementing a program to control the sea lamprey.

In accordance with Article VI of the Convention, the Commission pursues much of its program through cooperation with existing agencies. Sea lamprey control, a direct Commission responsibility, is carried out under contract with federal agencies in each country.

The Commission has now been in existence for 27 years. Its efforts to control the sea lamprey and reestablish lake trout have, in the main, been very successful although inherent problems remain. Residual populations of sea lampreys continue to be a source of mortality. Operational costs and costs of the chemicals used in the sea lamprey control program continue to rise. The need to develop and test alternative and supplementary control methods is urgent. Also, because of environmental considerations, the Commission is obligated to continue its support of research on the immediate and long-term effects of the chemicals being used. Self-sustaining populations of lake trout have not been widely reestablished, and efforts to encourage natural reproduction by lake trout must be intensified.

Through the years of its existence, the Commission has encouraged close cooperation among state, provincial, and federal fisheries agencies on the Great Lakes. Many, and probably most, of the fisheries problems are of concern to all agencies. The development of integrated and mutually acceptable management programs, supported by adequate biological and statistical information is vital. The Commission is gratified with the spirit of interagency cooperation that has developed and anticipates continued cooperation for the benefit of the fishery resource and its users.

2

ANNUAL REPORT OF 1982

Further, recognizing that ultimately the welfare of the fishery resource of the basin depends upon maintaining an environment of the highest possible quality, the Commission, with the support of other fishery agencies, is developing close liaison with those governmental agencies who have direct responsibility for water quality, pollution abatement, and land use.

The Commission's Annual Meeting was held at Green Bay, Wisconsin, June 9–10, 1982 and its Interim Meeting was convened in Toronto, Ontario, December 2–3, 1982.

ANNUAL MEETING

PROCEEDINGS¹

The twenty-seventh annual meeting of the Great Lakes Fishery Commission was held in Green Bay, Wisconsin, on June 9th and 10th, 1982.

Chairman Mason Lawrence convened the meeting at 0940 h, and called upon James Addis. Wisconsin Department of Natural Resources, to deliver a welcoming address on behalf of Carrol Besadny, Secretary of the Wisconsin Department of Natural Resources. Mr. Addis stated his belief that fish managers' achievements over the past 25 years are reflected in the allocation disputes currently possible. Environmental issues are encountered more frequently now by fisheries managers, and cooperative adaptive management techniques are beginning to be employed in their resolution.

LAKE TROUT REHABILITATION IN THE GREAT LAKES— PERSPECTIVES AND ISSUES AFTER TWENTY-FIVE YEARS

Former Commissioner and current Executive Director of Trout Unlimited, Robert Herbst, introduced this session on lake trout rehabilitation saying that in order to continue our progress in lake trout rehabilitation, cooperation in fishery research and management activities at all levels must continue. Wisconsin Department of Natural Resources' Bruce Swanson, Peter Ihssen (Ontario Ministry of National Resources), Ross Horrall (University of Wisconsin), Dick Pycha (U.S. Fish and Wildlife Service), John Dorr (University of Michigan), and George Spangler (University of Minnesota) addressed lake trout production in hatcheries, reproductive biology, performance and protection of stocked lake trout and natives, ecological concerns, and the prognosis for lake trout rehabilitation. Their recommendations were for more research into environmental limitations on

¹Minutes of the meeting are available from the Secretariat for readers desiring further detail.

rehabilitation of Great Lakes lake trout (e.g. chemical contamination of Lakes Michigan and Ontario), and for further investigation of factors responsible for the relative inefficiency of hatchery produced lake trout compared with natives in survival and reproduction. The existence and process of imprinting, with development of such tools as inherent (e.g. genetic) marks and attractants for spawning lake trout were deemed important topics for research emphasis. In order to encourage maximum contributions from hatchery fish, stocking strategies such as intensive stocking in appropriate areas (reefs, etc.), protection from fishing and other preventable mortality, and use of attractants if such become available, were strongly endorsed. No less important are hatchery strategies to produce lake trout best suited for survival and reproduction in the Great Lakes, including careful selection of stocks and utilization of wild proven sources, reduced reliance on success of fish under hatchery conditions in favor of feedback on in-lake survival and spawning success, modeling of hatchery conditions after those encountered by wild fish, and use of genetic markers and imprinting technology if such become available. Feedback from in-lake assessment efforts are essential to continued refining of stocking and hatchery strategies, and to the ultimate success of the lake trout rehabilitation program, and thus the coordination and opportunities for communication afforded by the Commission's committee structure was highly recommended to managers, researchers and fish culturists alike.

Contaminants and Great Lake Fish

In giving Commissioner Murray Johnson's introductory remarks, the Executive Secretary assailed as short-sighted the regulatory mindset which deals with levels and not effects of contaminants in fishes, and which regards contaminants as primarily the responsibility of environmental agencies: "This situation casts a pall over the social and economic aspects of Great Lakes fisheries. It creates a very real problem for commercial fishermen, processors and retailers; a shadow of doubt in the minds of every consumer and sport fishermen; an added question for the fishery manager; a symbol of defeat for the water pollution control agencies; and a mark for every environmental management critic to flaunt as an example of the failure of the 'system'. It denies full use of the Great Lakes fishery resources."

Peter Hodson (Fisheries and Oceans Canada), Wayne Willford (U.S. Fish and Wildlife Service), William Strachan (Environment Canada), and Clay Edwards (International Joint Commission) discussed the role of laboratory and field work in assessing the effects of contaminants of fish (complementary, with each finding its direction through the other), and the regulatory processes in Canada and the United States. Because of the large number of chemicals in the Lakes and soon to be introduced, and the interactive (even synergistic) nature of their effects on fish, regulators and researchers are in need of greater support from entities such as the Great Lakes Fishery Commission and its cooperators. Of particular interest is information on contaminants' effects on fish, habitat needs of fish, and priorities of fishery managers. It was formally recommended that the GLFC establish a standing sub-committee to evaluate the hazards which are posed to the fish and fisheries by these chemicals and to present such evaluations as appropriate to the regulatory agencies of Canada and the United States.

GREAT LAKES ECOSYSTEM REHABILITATION III: THE GREEN BAY/FOX RIVER SYSTEM

Bud Harris (University of Wisconsin), George Francis (University of Waterloo), Jack Day (University of Wisconsin), Jim Kitchell (University of Wisconsin), Ralph Bergman (Bay-Lake Regional Planning Commission), Joe Decker (Wisconsin Natural Resources Board), Lee Kernen (Wisconsin Department of Natural Resources), and Bill Nelson (Green Bay Packaging Inc.) discussed their application of the GLER process in improving the water quality, and subsequently recreational and fishing opportunities in the Green Bay/Fox River system. (Detailed accounts are available in the Commission's Technical Reports No. 37, 38.) It was noted that the Green Bay/Fox River situation was particularly suitable for application of the GLER process, having local, defined problems whose solution will yield certain rewards for the community; having the support of a concerned community, including corporate members; and requiring cooperation for success, as no one element of the Green Bay/Fox River system.

REPORT OF THE BOARD OF TECHNICAL EXPERTS

George Spangler (University of Minnesota) reported the proceedings of the Board of Technical Experts' first 1982 semi-annual meeting where it was briefed by its committees on providing fish habitat advice, distributing a summary of the Fish Health Workshop (details being published by Wiley and Sons), status of socio-economic projects, outcome of adaptive management workshops on lake trout/sea lamprey interactions and those of Lake Erie percids, implementation of findings from the Stock Concept Symposium, suggested terms of reference for the Steering Committee on Integrated Management of Sea Lamprey, and report of members attending Lake Committee meetings. Assignments underway included papers on lake trout rehabilitation and allocation. Supported were indexing of 30 years of the proceedings and the Journal of the International Association for Great Lakes Research, Eric Volk's (University of Washington) research proposal to develop ammocoete aging techniques, Stephen Gloss's (Cornell University) work with Bayer 73, and development of proposals to determine research needs for lake trout rehabilitation and resolution of socio-economic

issues. Scheduled for a later meeting were consideration of a proposal to examine possible "resistance" of Seneca Lake lake trout to sea lamprey induced mortality, and an evaluation of the Board's role in advising the Commission.

LAKE COMMITTEES REPORTS

Chairmen of each Lake Committee (Superior, Michigan, Huron, Erie, and Ontario) and the Council of Lake Committees, discussed issues of prime concern to Great Lakes fishery managers: managing stocks of common concern (including lake trout, percids, and sea lamprey), preservation of fish habitat, and allocation policies. (Highlights of the 1982 Lake Committee meetings may be found in the Management and Research section of this Annual Report.) Lake Committees reviewed and largely approved a proposed process for implementing integrated sea lamprey management, and expressed their concerns regarding cuts in the Commission's budget and sea lamprey control and assessment activities. They urged the Commission to proceed in organizing a fish habitat advisory committee. The Commission agreed to finance an adaptive management workshop devoted to fish community and fishery interactions in Lake Erie, and commended Lake Committees for the formation of technical committees charged with developing plans for achieving lake trout rehabilitation.

REPORT OF THE GREAT LAKES FISH DISEASE CONTROL COMMITTEE

James Warren (U.S. Fish and Wildlife Service), Chairman of the Great Lakes Fish Disease Control Committee, reported on the status of fish disease in the Great Lakes basin: disease agents denied entry (hemorrhagic septicemia virus, infectious hematopoietic necrosis virus, and the parasite Ceratomyxa shasta); limited numbers of cases of enteric redmouth and whirling disease; and a decline in instances of infectious pancreatic necrosis and bacterial kidney disease. Furunculosis, however, is common and may cause serious losses. Warren discussed his Committee's progress on "A Guide to Integrated Fish Health Management in the Great Lakes Basin," exploration of the causes of early mortality in salmon and steelhead trout, and a review of agency fish health protection programs and regulations. The Commission responded positively to its Fish Disease Committee's recommendation that proliferative kidney disease (PKD) be designated an emergency disease (i.e. its detection requires immediate efforts at eradication), and expressed its willingness to consider sponsoring a modest brochure on fish disease control.

PROGRESS TOWARD INTEGRATED SEA LAMPREY MANAGEMENT

Bob Stevens (U.S. Fish and Wildlife Service), John Davis (Fisheries and Oceans Canada), Don Hales (U.S. Fish and Wildlife Service), Jim Seelye (U.S. Fish and Wildlife Service), and Commission Chairman Mason Lawrence discussed improvements in the U.S. Agent's research capabilitics; a proposed planning and implementation process for integrated pest management (IPM); developments in lampricide formulations and alternatives; the status of the barrier dam program and its importance in IPM; and other elements in the integrated sea lamprey management arsenal i.e. competitive displacement, pathogens and parasites, physical and electrical barriers, toxicants, attractants and repellents, chemosterilization, immunosterilization, and radiation sterilization. (More details are given in the Sea Lamprey Control and Research Section of this Annual Report.)

UPDATE FROM THE INTERNATIONAL JOINT COMMISSION

Clay Edwards (International Joint Commission) reported on the meeting then underway of Great Lakes States Governors and Premiers of Quebec and Ontario, a possible hearing on Soo Power Company's request for increased water allocation from the St. Marys River, the IJC's Water Quality Board's request for input from the GLFC on its report "Water Intakes and Thermal Discharges," and his efforts to alert headquarter offices and the Boards of Control to the issue of winter navigation.

NATIONAL SECTION MEETINGS

Commissioner Henry Regier reported much useful discussion but no specific action at the Canadian Section meeting, and Commissioner Claude Ver Duin reported enthusiasm and progress among the newly reorganized U.S. Advisors who expressed concern, however, that one U.S. position on the Great Lakes Fishery Commission remained unfilled.

Administrative and Executive Actions

Summaries of Commission actions since the 1981 Annual Meeting through this 1982 Annual Meeting included:

General

 presenting Meritorious Achievement Awards to Joe Kutkuhn (U.S. Fish and Wildlife Service) for his service to the Commission on the Board of Technical Experts, to Andy Lawrie (Ontario Ministry of

ANNUAL MEETING

National Resources) and Bill Pearce (New York Department of Environmental Conservation) for chairing the Strategic Plan Steering Committee. Authorization of a Meritorious Achievement Award to Pat Chamut (Fisheries and Oceans Canada) for his leadership of the Sea Lamprey Audit Team.

- -- establishing an external committee to review the administrative/ operative procedures of the Board of Technical Experts.
- revising and approving of budgets for fiscal years 1982 through 1984.
- establishing a common fiscal year for the Commission and its U.S. and Canadian Agents, i.e. the period 1 October to 30 September.
- acting to insure specified capital goods and to secure immunity from suit in Canada.
- improving a chemistry laboratory at the Hammond Bay Biological Station, and boat docking and water supply facilities at the Sault Ste. Marie Sea Lamprey Control Centre.
- agreeing to supply granular Bayluscide at cost to the Lake Champlain Fish and Wildlife Management Cooperative, and to the New York Department of Environmental Conservation for its studies in Seneca Lake.
- designating that the Memorandum of Understanding with the U.S. Fish and Wildlife Service will now be made by the full Commission and not just the U.S. Section.

Publications

- the proceedings of the Commission-sponsored Stock Concept Symposium in the December 1981 issue of the Canadian Journal of Fisheries and Aquatic Sciences.
- the Strategic Great Lakes Fisheries Management Plan, and a brochure on same for cooperators' distribution.
- the U.S. Fish and Wildlife brochure on sea lamprey control.
- the slide/tape shows, "The Sea Lamprey-Great Lakes Invader" and "Bringing Back the Great Lakes."
- a Special Publication, Nancy Auer et al.'s (University of Michigan) Great Lakes larval fish manual.
- revising the Commission's policy on the style of its Technical Report Series, now to follow that of the Canadian Journal of Fisheries and Aquatic Sciences.

Fisheries and Environment

 — collection of papers related to the Stock Concept Symposium installed at the Ontario Ministry of Natural Resources' Maple Research Station library.

- distributing to cooperators pertinent recommendations of Stock Concept Symposium participants.
- holding a workshop on effects of various stresses on fish health, co-sponsored by the Commission and Fisheries and Oceans Canada, at Ontario's Geneva Park in November 1981.
- contracting with Hough, Stansbury and Michalski Ltd. for an analysis of the St. Marys Rapids dewatering problem and proposed solutions, which was useful in February 1982 discussions with the International Joint Commission. Other topics discussed were the ecosystem approach, dewatering of the St. Marys Rapids, fish contaminants, and the Niagara River situation.
- sponsoring an October 1981 adaptive management workshop on sea lamprey/salmonid community dynamics.
- providing funds for computer analysis of Lake Erie yellow perch data and the development of a model for interjurisdictional management.
- sponsorship of a summer 1982 adaptive management workshop to examine percid community interdependence in Lake Erie.
- funding of phase three of Great Lakes Ecosystem Rehabilitation, a feasibility report.
- financially supporting Lino Grima's (University of Toronto)
 "Allocation of Fishery Resources: Interpretive Review and Great Lakes Experience."
- funding meeting chaired by Dan Talhelm (Michigan State University) to consider how best to isolate and present Great Lakes sport fishing data collected in the 1980 National Fishing Survey of Canada and the U.S., Talhelm's development of the 1980 data, and his updating of the "1979 Current Estimates of Great Lakes Fisheries Values."
- placing proliferative kidney disease (PKD) on the list of emergency diseases.
- revising the Commission's 1976 position statement on lake trout rehabilitation, and endorsing the U.S. Fish and Wildlife Service's lake trout policy.

Sea Lamprey

- approving a proposed process for planning and implementation of integrated sea lamprey management.
- supporting as part of an ongoing process an October 1981 workshop to promote uniformity in classifying and reporting sea lamprey marks on fish.
- -- revising the Commission's "Administrative Guidelines for the Barrier Dam Program for Sea Lamprey Control" to make them more compatible with the Canada-Ontario barrier dam agreement.

- providing funds to the Michigan Department of Natural Resources for construction of barrier dams on the Au Gres River, White River, Days River, and Bear Creek.
- arranging for study of the acoustic properties of sea lamprey in varying life stages.
- providing for an update through 1983 of a computerized annotated cyclostomata bibliography by William Beamish (University of Guelph).
- establishing a committee to develop plans for conducting research on the effects of TFM on stream invertebrates.

Election of Officers

-- election of Commissioner Doug Johnston Commission Chairman, and Commissioner Bill Horn Vice Chairman, for a two year period up to and including the 1984 Annual Meeting.

Adjournment

After announcing the locations and dates of the 1982 interim Meeting (Toronto on December 2nd and 3rd) and the 1983 Annual Meeting (Burlington, Ontario, on May 11th and 12th), and thanking all concerned for their participation, Chairman Mason Lawrence adjourned the two day meeting.

INTERIM MEETING

PROCEEDINGS¹

The Great Lakes Fishery Commission's 1982 Interim Meeting was held in Toronto, Ontario, Canada, on December 2 and 3, 1982. In his introductory remarks, Chairman K. H. Loftus welcomed the two new Canadian Commissioners, G. C. Vernon and P. S. Chamut.

The Region III Director, United States Fish and Wildlife Service, H. K. Nelson, reviewed personnel changes at the national, regional, and control units levels, and presented to retiring project supervisor Robert Braem (in charge of the U.S. sea lamprey control stations in Marquette and Ludington, Michigan), a U.S. Fish and Wildlife Service award. He discussed the federal and Commission lake trout policies, the need for continued cooperation in efforts such as the Strategic Great Lakes Fishery Management Plan and integrated management of sea lamprey, the status of national fish hatcheries, travel restrictions, and the impact on the rehabilitation programs of the illegal harvest of lake trout and other species.

John Davis (Department of Fisheries and Oceans) summarized progress made by the steering committee on developing recommendations for implementing integrated management of sea lamprey. He explained that such an approach was best on a lake-by-lake basis which should involve those agencies with fishery management responsibilities. The steering committee would provide guidelines for agency use. He reviewed the philosophy of integrated management of sea lamprey, its common goal, issue statements, and strategies for implementing it. It was thought that if the Commission endorses this process, one or two lake committees could start planning in the near future. On behalf of the chairman of the Council of Lake Committees, R. M. Christie (Ontario Ministry of Natural Resources) expressed the Council's pleasure with the process for implementing inte-

¹Minutes of the meeting are available from the Secretariat for readers desiring further detail.

INTERIM MEETING

grated sea lamprey management, the concept of which had been accepted at the 1982 Lake Committee Meetings, as a logical outgrowth of the Strategic Great Lakes Fishery Management Plan. If approved by the Commission, the process will be addressed at the 1983 Lake Committee Meetings.

The Secretariat reviewed the strategy proposed by the committee to measure the long-term impact of regularly scheduled applications of lampricides on stream invertebrates and fish and to determine the short-term effect.

George Spangler (University of Minnesota) described the three completed Adaptive Management Workshops, summarized ancillary benefits, noted future directions for simulation modelling, and demonstrated the lake trout rehabilitation model. He concluded that the Adaptive Management Workshop process has proven useful in fostering communication among Great Lakes biologists and seems certain to play a role in future activities of the Commission and its constituent agencies.

The Commission also heard the following reports: the Secretariat reported on the recommendations of the committee developing standards for reporting sea lamprey marks on fish; the New York Department of Environmental Conservation reported on sea lamprey control in Seneca Lake; the U.S. Fish and Wildlife Service described the Lake Champlain Fisheries and Wildlife Management Committee's efforts to develop and maintain a diverse salmonid fishery in Lake Champlain to supplement the existing fishery, along with studies to assess sea lamprey populations in the lake for developing appropriate recommendations for the fall of 1984. The Commission also accepted, with thanks to the Department of Fisheries and Oceans Canada who have funded the study, the report on the degradation and fate of TFM in the environment.

The Commission's contract agents, the U.S. Fish and Wildlife Service and Department of Fisheries and Oceans Canada, reported on the problems of sea lamprey in the St. Marys River (which connects Lake Superior to Lake Huron), on the development of sterile male techniques for sea lamprey management, pheromone research, lampricide studies, and developments from the perspective of the contract agents. (More detailed information is available elsewhere in this annual report under Sea Lamprey Control in the Great Lakes and Sea Lamprey and Related Research at the National Fishery Research Laboratory, Hammond Bay Biological Station, and Monell Chemical Senses Center.)

The Commission also accepted reports on sea lamprey wounding rates on fish in the five Great Lakes. In most of Lake Superior, Lake Michigan, and Lake Huron, the rates showed no major increases. In Lake Erie, lamprey wounding on lake trout was considerably higher than in the upper Great Lakes and ranged from 9.6% to 55.6% depending on size of fish. Coho salmon in Lake Erie averaged 12.2% wounding. In Lake Ontario wounding rates on lake trout were considered high with evidence of significant mortality; New York Department of Environmental Conservation recommended a 5-year experimental control project in Oneida Lake to determine whether sea lamprey from that system migrate to Lake Ontario.

The Secretariat summarized programs and budgets for fiscal years 1983 and 1984. Program costs for fiscal year 1983 were expected to total \$6.4 million and for fiscal year 1984 \$6.5 million.

LAKE COMMITTEE REPORTS

Four of the five lake committees elected to report on items of interest. The Lake Ontario Committee report addressed the loss of the European market for eels due to contaminant residues, an attempt to establish a lake trout strain adapted to Lake Ontario, Ontario's first use of coded wire tags in Lake Ontario, a large decrease in sculpin and trout-perch populations, and the maintenance of Bay of Quinte walleye populations. The Lake Erie Committee reported on the development of a proposal for integrated sea lamprey management for consideration in 1983 and a proposed lake trout rehabilitation plan. Attendees also heard a presentation on the Commissionfunded Lake Erie percid workshop, its objectives and findings. The Lake Huron Committee shared with the attendees the encouraging news that young splake had been taken by commercial fishermen in shallow yellow perch nets, and that more data will be sought. The Lake Superior Committee reviewed the progress of the Lake Superior Technical Committee in addressing major concerns such as establishment of a lake trout rehabilitation goal and associated strategies, identification of goals and objectives for the lake, the subject of fisheries allocation, and input into the development of a basinwide approach to sea lamprey control.

The Council of Lake Committees representative reported on participation in planning associated with integrated sea lamprey management, advised the Board of Technical Experts on some management interests, attended the 1982 U.S. Fish and Wildlife Service sea lamprey research needs meeting, provided the U.S. Core of Engineers with a statement at its public workshop and additional lock studies for the St. Lawrence Seaway, and participated in the adaptive management (modelling) workshops (sea lamprey, lake trout) as a fishery management respresentative.

BOARD OF TECHNICAL EXPERTS

The Board Chairman reported on recent activities and recommendations to the Commission including the recommendation that the Commission support the proposal to investigate differential mortality of Great Lakes and Seneca Lake strains of lake trout following attacks by sea lamprey, reviewed and accepted for publication in the Technical Report Series a paper by Heimbuch and Youngs (Cornell University) titled "Application of decision analysis to sea lamprey control," reported on planning for the 1983 lake trout research needs workshop, initiated evaluation of the three adaptive management workshops sponsored by the Board, and experimented in a creative problem identification and solution exercise. The Board also supported a proposal from Commission Chairman Loftus for a Commission-sponsored symposium on prediction and assessment of available and realized fish harvests, and one from Commission Regier for an American Fisheries Society symposium on rehabilitation of the fisheries and habitat of walleye in the Great Lakes basin. The Commission also heard the Board's recommendations for developing a fish habitat advisory capability for the Commission.

INTERNATIONAL JOINT COMMISSION (IJC)

The Commission heard the report of the first successful attempt by the IJC's Science Advisory Board to relate ongoing projects to research needs. Data from 25 institutes under 10 issues extracted from the Water Quality Agreement and an assortment of IJC Board recommendations were compared to ongoing research subjects and activities. Among the findings were that a shift has occurred in the topics being addressed (to those identified as "priority") but no shift has occurred in the disciplines of researchers; historical change in sources of pollution has been slight. It was believed that such an analysis was important in that it encourages continued support for critical areas of research and identifies areas for additional research efforts.

The Commission was also informed of recent IJC-sponsored reports such as the first biennial report under the 1978 Great Lakes Water Quality Agreement, new objectives issued by the Aquatic Ecosystem Objectives Committee of the Science Advisory Board, a detailed review by the Water Quality Board of 18 class "A" areas of concern identified in the previous report, and two reports from the Committee on the Assessment of Human Health Effects of Great Lakes Water Quality.

OTHER REPORTS

The Executive Director of the Great Lakes Commission reviewed resolutions approved at the Great Lakes Water Resources Conference for Governors and Premiers held in June 1982. The resolutions addressed items such as water diversion and consumptive uses, navigation and shipping, and water quality. He believed that there was great significance in that the governors and premiers felt the need to meet and consider issues of concern to all.

Daniel Talhelm (Michigan State University) reported that his projects on the national fishing surveys and current annual monetary values are in process and he reviewed nonuse and unrevealed values from his extramarket values study.

The Commission also heard reports on acid precipitation and the status of negotiations from the Canadian and U.S. perspectives.

OTHER BUSINESS

The Commission presented Robert Braem, retiring supervisor of the sea lamprey control stations of the U.S. Fish and Wildlife Service, and J. J. Tibbles, the director of the Canadian Sea Lamprey Control Centre, letters of appreciation and Meritorious Service Awards. Other awards included a Meritorious Service Award to Commissioner Chamut for his leadership in the program audit of sea lamprey control, and letters of appreciation and satellite photos of the Great Lakes to retired Commissioners Murray Johnson and Doug Johnston.

SUMMARY OF EXECUTIVE ACTION

Sea Lamprey Committee

The Commission will sponsor U.S. Fish and Wildlife Service research to identify bisazir residues (sterilant) in sea lamprey. Hopefully the radiation and bisazir will continue to be developed as agents for sterilization of male sea lamprey until such time as a decision on methods of choice can be knowledgeably made. The plan for integrated sea lamprey management was accepted. A small group will be convened to prepare a report for the Sea Lamprey Committee on the role of hormones and attractants/repellents in sea lamprey management.

Fisheries and Environment Committee

The Committee reported that a Commission brochure on lake trout rehabilitation is under active development. The Commission also adopted for use in hearings and by cooperators a "position on maintenance of fish habitat in the St. Marys Rapids."

Membership in the Board of Technical Experts was reviewed and eight individuals were appointed for 2-year terms. A report on Board functions and procedures has been received and will be reviewed. Further, the Fisheries and Environment Committee will work with Board members to develop a fish habitat advisory capability mechanism for handling broad issues and facilitating lake committee planning.

Planning is underway for Chairman Loftus's proposed symposium on prediction and assessment on available and realized fish harvest.

The Commission funded the first year of a study of causes of differential mortality of lake trout and has also partially funded the American Fisheries Society Urban Fishing Symposium.

Finance and Administration Committee

The Commission will send a letter to the IJC congratulating them on their first biennial report under the Great Lakes Water Quality

Agreement of 1978. A second letter will relay comments on the report and a third will offer to co-sponsor with the IJC a task force on indicators (e.g. lake trout) of healthy aquatic ecosystems.

Adjournment

The meeting was adjourned at 1245 h on 3 December 1982.

BOARD OF TECHNICAL EXPERTS REPORT

F. W. H. Beamish, Chairman Board of Technical Experts University of Guelph Guelph, Ontario NIG 2W1

The Board includes 15 members with voting privileges, two liaison Commissioners, Secretariat liaison and the chairman of the Council of Lake Committees as an ex-officio member. The Board is strongly committed to a proactive role in identifying and evaluating the needs of the Great Lakes Fishery Commission as well as the Great Lakes community as a whole. To this end the Board has, with the benefit of expert leadership, devoted considerable time to creative problem solving and the establishment of objectives conducive to the long term benefit of the Great Lakes. The Board has undertaken to prepare a Prospectus of Great Lakes Fishery Research not only to provide a current data base but also to delineate future research priorities.

The earlier Board initiatives in adaptive management, the Salmonid Community Workshop and the Lake Erie Fish Community Workshop have been published as Great Lakes Fishery Commission Special Reports, 82-2 and 83-1, respectively. Final reports on the Lake Trout Rehabilitation Model (from SLIS) and the Integrated Pest Management Workshop (held in August 1982) are near completion, again as special reports. A comprehensive evaluation of the adaptive management concept will be coordinated by the Board within the forthcoming year. Other Board initiatives include a Lake Trout Research Needs Workshop (scheduled for August 1983) and a Fisheries Assessment Symposium (scheduled for 1985).

BOTE reviewed a number of research proposals and supported two: causes of differential mortality of lake trout strains resulting from sea lamprey attack and development of techniques for aging sea lamprey.

Unification of the diverse discipline interests among the BOTE membership towards proactive objectives for the Great Lakes Fishery Commission will provide for stimulating and provocative recommendations in the future.

MANAGEMENT AND RESEARCH

19

SUMMARY OF MANAGEMENT AND RESEARCH¹

REPORTS FROM LAKE COMMITTEES

This section examines 1982 highlights of fishery management and research activities and major changes in the status of fish stocks in the Convention Area as reported to the Commission's lake committees in the spring of 1983. Great Lakes state, provincial, and federal fishery agencies participate in lake committee meetings, which provide a forum for implementing coordinated management and research programs and scientific data exchange on fish stocks of common concern. A review of these activities by species follows.

LAKE TROUT

Efforts to reestablish self-reproducing stocks of lake trout in the Great Lakes basin were intensified in 1982. The lake committees reexamined their goals relative to rehabilitating lake trout populations, and initiated a planning process to provide direction for conducting the rehabilitation program on a more coordinated basis.

The Council of Lake Committees (with Canadian members abstaining) reviewed the distribution agreement for lake trout reared in USFWS hatcheries and stocked in U.S. waters. In addition to retaining the formula used in the past for distributing lake trout produced in existing USFWS hatcheries, the Council agreed that the interim production from the new Iron River National Fish Hatchery (i.e. the fish reared during the early phase-in stage) would be stocked in Lake Michigan refuges. When the interim production exceeds one million yearlings, the accord will be renegotiated.

Progress in lake trout rehabilitation is reviewed for each lake as follows: Lake Superior—In 1982 a technical working committee that included representatives from each state, the Province of Ontario, the USFWS, and U.S. Indian tribes, was established and charged with reviewing long range goals for rehabilitation, developing recommendations on desirable strains of lake trout for stocking, determining an acceptable mortality rate, and suggesting management strategies for achieving rehabilitation. The technical committee would make recommendations on the charges and report back at the 1983 meeting of the lake committee.

In Michigan's inshore waters of Lake Superior, native lake trout comprised 37% of the 1982 assessment catch; total abundance (native plus hatchery trout) was down 35% from 1981. This decline reportedly resulted from increased fishing and reduced stocking.

Results from field studies of lake trout reproduction on two reefs in Presque Isle Harbor, Michigan were reported in 1982. An average of 6,663 fish (31% females) were estimated to have spawned on these reefs in 1977–80. Egg densities on the reefs varied from 122 to $518/m^2$ and survival to the fry stage fluctuated between 9 and 16%.

Wisconsin biologists reported that the spawning run of lake trout on Gull Island Shoal in 1982 (13,270 fish) was slightly larger than in 1981. In Minnesota waters older lake trout are becoming more common in assessment catches; before 1972 no fish older than age 9 were observed, but during 1977-82 fish of ages 9-14 were taken in samples. Abundance of adult native lake trout remains low, (only 6% of adults in assessment samples), but increasing numbers of juvenile natives are encouraging.

Considerable progress in lake trout rehabilitation is also reported for Ontario waters of Lake Superior. The proportion of native fish in commercial lake trout catches varied widely according to locality, ranging from 9 to 100% in 1982.

Sea lamprey wounding rates on lake trout in Lake Superior have been edging upward since 1980, when rates were generally low (less than 5%). Wounding rates in one area, lower Keweenaw Bay, were reported to be as high in 1982 (near 50%) as those recorded before sea lamprey numbers were greatly reduced in 1962. The increase in wounding is thought to be related to reductions in lake trout abundance (from fishing), which leave fewer prey fish to support the residual stocks of sea lamprey.

Lake Michigan—The Lake Michigan Committee approved a proposal from its Lake Trout Technical Committee to develop a coordinated, interagency plan for achieving lake trout rehabilitation. The technical committee will recommend maximum allowable mortality rates, appropriate strains and strategies for stocking, and areas for designation as refuges. A report is expected for consideration at the 1983 meeting of the lake committee.

The technical committee reported that the lakewide catch of lake trout was 321,000 fish in 1981 (261,000 were caught in 1980). This amount is considered to be excessive, when combined with losses from sea lamprey

¹Commercial fish landings by lake and species for 1982 are given in Tables 1-5.

MANAGEMENT AND RESEARCH

predation and from natural causes, and may be the major reason that few lake trout in Lake Michigan survive past age 10—despite large stockings that commenced in 1965–66. Recruitment from natural reproduction has not been observed, and may be impeded by spawning stocks comprised of only 3 or 4 year-classes.

Sea lamprey wounding rates in northern Lake Michigan waters declined in 1982 following a sharp increase in 1981. Wounding rates remain low (less than 2%) in southern waters.

Lake Huron—Neither lake trout (Michigan waters) nor splake (a brook trout x lake trout hybrid stocked in Ontario waters) have been observed to reproduce successfully in Lake Huron. In Michigan, lake trout mortality was estimated at 76% for mature fish in northern waters where angler and tribal commercial fisheries operated, and at 54% in central waters where the angler fishery is very developed but commercial fishing is lacking. The treaty fishery reported a catch of 240,000 pounds of lake trout in 1982; comparable figures for the angler fishery were not available.

Sea lamprey wounding rates appeared to be down from 1981 in northern and central Lake Huron (main basin), but sample sizes may have been too small for an accurate assessment. Wounding rates in southern waters remained low (1.8-3.2%), although they increased somewhat from 1981 (0.9-1.5%).

Lake Erie—A Lake Trout Task Group was formed in 1980 to formulate goals and objectives for lake trout rehabilitation in Lake Erie. The task group was further directed by the Lake Erie Committee in 1981 to develop a management plan for lake trout. In 1982 the task group presented a plan for the U.S. waters of the eastern basin, but there was insufficient time for a review of the plan by the Standing Technical Committee (STC), a group of senior agency biologists who advise the lake committee tabled the plan pending a STC review.

Stocking of lake trout in the U.S. waters of the eastern basin began in 1969, but plantings of yearlings (an age considered to be optimum for planting) were small until 1978 and thereafter (exclude 1980), when an average of about 200,000 were planted. Therefore, significant spawning stocks resulting from the larger yearling plants have not had time to develop.

Lake Ontario—A progress report on the development of a plan for rehabilitating lake trout in Lake Ontario was presented to the Lake Ontario Committee by a technical subcommittee in 1982. In the preceding year a strategy for rehabilitation had been formulated by the subcommittee. The strategy outlined an objective of establishing a stock of 0.5–1.0 million adults from annual plantings of 2–3 million fish (1.5 million were stocked in 1981). Management initiatives relating to strain selection, hatchery practice, mortality regimes, and reproductive requirements are discussed in the progress report. A final plan is expected soon. In Lake Ontario abundance of adult lake trout increased 130% from 1981 levels as a result of larger stockings begun in 1978. However, sea lamprey wounding rates on reference size classes of lake trout increased from 3-5% in 1981 to 8-13% in 1982. This increase was surprising because the acceptable level to which wounding rates declined in 1981, attributed to the treatment of the Black River in 1980, was expected to persist for several years. Sea lamprey-induced mortality on lake trout may be high; surveys conducted with bottom trawls in the fall of 1982 indicated that as many as 71,000 parasitized, dead lake trout were on the lake floor at that time. The magnitude of this loss indicates that additional sea lamprey control measures are needed for Lake Ontario.

LAKE WHITEFISH

Whitefish landings which had reached a modern high from the upper Great Lakes in 1981, did so again in 1982, when a catch of 10.9 million pounds was reported. The 1982 catch exceeded that of 1981 by 10%, mainly as a result of larger catches in Lake Huron. Most of the improvement in 1981 had come from larger catches in Lake Michigan. Lake Superior catches decreased slightly in 1982, but are still above long term averages. Hence, whitefish stocks appear to be at very high levels of abundance in each of the upper lakes, and ths high abundance is in large part a result of the sea lamprey control program.

In the lower Great Lakes, whitefish stocks are reported to be improving in Lake Ontario and perhaps in Lake Erie, but numbers presently in each lake are only a small fraction of historical abundance levels.

LAKE HERRING

Once considered one of the most prolific of fishes throughout the Great Lakes, the lake herring maintains a stronghold only in the Canadian waters of eastern Lake Superior. It was feared that fishing practices or the invasion of exotic species had precluded a recovery of remnant populations, but the appearance of strong year-classes each year 1978–80 in the Wisconsin and Minnesota waters of Lake Superior has considerably brightened the prospects for the recovery of this species.

CHUBS

Chub stocks continue to improve in Lakes Michigan and Huron, but they are unchanged in Lake Superior. Adult chubs in Lake Michigan are reported to be 40 times as abundant in 1981 and 1982 as in 1973–77, when they were very scarce. Chub landings in Lake Michigan should soon increase as a result of larger catch quotas, and because the ban on the sale of chubs from the southeastern part of the lake will be lifted. Concentrations of dieldrin in chubs from the southeastern area formerly exceeded USFDA tolerance levels and led to the ban, but they have now dropped to acceptable levels.

Chub spawning stocks have improved in Lake Huron, largely because of a strong 1977 year class. Reproduction was also good in 1982, so chubs in the main basin appear to be recovering after almost two decades of very low abundance that followed fishery induced stock collapses in the early 1960s. A Lake Huron Chub Technical Committee was formed in 1981, and was charged with establishing areas for interagency management, assembling pertinent data, and determining key informational needs and management options.

Low market demand for Lake Superior chubs has caused catches in that lake to decline to 263,000 pounds, or only about 1/6 the average catch in the preceding decade. It appears that the recovery of chub fisheries in Lakes Michigan and Huron is responsible for the curtailed demand for Lake Superior chubs.

PINK SALMON

State of Michigan biologists reported that spawning runs of pink salmon occurred in 26 Lake Superior, 3 Lake Michigan and 3 Lake Huron tributaries during 1982, and that in Lake Superior 11% of the spawners were 3-year olds. Pink salmon were inadvertently released into Lake Superior streams in 1956, and because the species normally has a 2-year life cycle, major runs originally occurred only in odd-numbered years. However, slow growth rates in Lake Superior delayed maturity to 3 years in enough fish to start significant even-year runs, and even year spawning now occurs in each of the upper lakes.

Pink salmon have also spread to the lower Great Lakes, but even-year runs have not been reported in them.

RAINBOW SMELT

Smelt continue to decline in southwestern Lake Superior; they were so scarce in 1982 that they were not fished commercially at all in two Minnesota districts. By way of contrast, smelt remain abundant in Lakes Michigan and Huron because of good reproduction in 1980 and 1981.

The Canadian smelt fishery in Lake Erie continued to expand in 1982 with a record catch of 37.4 million pounds, a 23% increase from 1981, which was also a record year. Smelt reproduction was very successful in 1981 and in 1982, so that recruitment appears to be adequate to sustain the fishery.

Smelt remain dense in Lake Ontario, but they are not sought much by commercial fishermen.

ALEWIFE

Alewives are native only to Lake Ontario, and invaded the other Great Lakes following the construction of the Welland Canal, which bypasses Niagara Falls. In Lake Michigan alewives dominated the fish biomass in the 1950s and 1960s, but a recent decline has reduced them to the lowest level since surveys began in 1973. Alewives also declined in Lake Huron, but not as severely as in Lake Michigan. Following major mortality in the winter of 1976–77, alewives in Lake Ontario increased their abundance rapidly, and reached their pre-dieoff level of density in 1981. Alewife abundance remained high in 1982.

WHITE PERCH

Not native to the Great Lakes, white perch are thought to have entered Lake Ontario via the Erie Barge Canal (opened to Lake Ontario in 1819) and Lake Erie via the Welland Canal (opened in 1829). In Lake Ontario the abundance of white perch has recently declined in association with an alewife population recovery.

White perch were first reported from Lake Erie in 1953, and numbers remained low until a strong year-class was produced in 1977. Each year since then, young-of-the-year white perch have been taken in assessment trawls, and concern is expressed that the species may proliferate and displace native fishes. White perch also reproduced in good numbers in Lake St. Clair in 1977. They have now entered the Lake St. Clair sport catch, 9,000 having been creeled in 1982.

White perch have not been reported from the upper lakes, but their colonization of the connecting waters between Lakes Erie and Huron suggests that an invasion of the upper lakes is imminent.

WALLEYE

Considerable management and research efforts are devoted to walleye in the Great Lakes, because the species is in great demand as a sport and food fish. Walleyes prefer shallower, warmer waters, and consequently are most abundant in embayments.

Green Bay—A total of 1.7 million walleye fingerlings and 28 million fry have been stocked in Sturgeon Bay (southeastern Green Bay) in alternate years beginning in 1973. The hatchery fish reproduced in the Bay in 1980, suggesting that the stocking program may be successful in reestablishing self-sustaining populations. In 1977 the stocking program was extended to the lower Fox River, the major tributary to Green Bay, and feral populations have been established there.

Saginaw Bay—Native walleye stocks collapsed in Saginaw Bay in the early 1940s, and the populations remained depresed for almost four decades. Planting of fingerlings was initiated in 1979 (0.3 million each year except none in 1980), and the 1979 and 1981 year-classes were commonly observed in sample catches in 1982. It is not known to what extent, if any, the hatchery fish are reproducing in the Bay.

Lake St. Clair—Abundance of adult walleyes in Lake St. Clair is high, due mainly to good reproduction in 1977, 1979, and 1980. The Thames River (a major tributary of Lake St. Clair) is used for spawning by walleyes inhabiting a wide geographical area, according to results of a study in which

about 23,000 walleyes that entered the river to spawn during 1980–82 were tagged. Of over 3,000 tag returns to date, 40% came from fish caught in Lake St. Clair, 30% in the St. Clair River, 22% in southern Lake Huron, and 8% in the Detroit River and Lake Erie.

Lake Erie—The walleye stocks in Lake Erie's western basin are by far the largest of any in the Great Lakes, with the fishable portion estimated at 25 million fish in 1982. Based on recommendations from its Standing Technical Committee, the Lake Erie Committee approved a fishing rate of F = 0.285, which corrsponded to a catch quota of 5.7 million fish, for 1982. However, mainly because of underharvests in Ontario and Michigan, the actual catch in 1982 was 16% less than the quota, and the actual fishing rate was F = 0.238.

Recruitment of walleyes to the western basin populations continues at high levels with reports of a very strong 1982 year-class. However, stock size may be reaching a limit. Fish older than age-8 are appearing for the first time, weight at age is decreasing, and maturation is being delayed. Now only 9% of the age-2 females are spawning, whereas in the 1920s and in 1974–76 over 70% of this age group spawned.

YELLOW PERCH

Yellow perch are often associated with walleyes in the Great Lakes, and are considered to be equally valuable. In Green Bay commercial landings amounted to 600,000 pounds in 1982, compared with the 1972–81 average of only 463,000 pounds. However, fishing effort (mainly gill nets) jumped by 100%, and CPE's actually declined. New regulations (quotas, closed seasons, and closed areas) are being considered for 1983. Reproduction of yellow perch was good in 1982.

In Saginaw Bay the 1982 year-class of perch was reported to be the best since assessment trawling began in 1970. The commercial catch (155,000 pounds) in 1982 was 15% less than in 1981, probably as a result of a regulation put into effect in 1982 that increased the minimum size limit of commercially-caught perch from 8.0 to 8.5 inches.

With 10 million pounds landed by the commercial fishery in 1982, Lake Erie is the major producer of yellow perch in the Great Lakes. The 1982 catch was down by I million pounds from 1981 as a result of restrictions placed on Ohio's commercial fishery in the central basin. The new regulations are aimed at increasing numbers of spawners, in response to concerns of Ohio fishery managers with the lowered productivity since 1970 of the central basin stocks. Angler catches of perch remain high (3 million pounds in 1982) in Ohio's waters of Lake Erie.

A Yellow Perch Task Group presented management options to the Lake Erie Committee for rehabilitating central basin perch stocks. The report was taken under advisement and the task group was directed to develop a quota management scheme for the entire lake. In Lake Ontario reproduction of perch has been poor for four consecutive years. The last good year-classes were produced in 1977 and 1978, immediately following a massive alewife mortality. It is speculated that in Lake Ontario when alewives are abundant, yellow perch (as well as white perch) reproduction is poor.

Species	Michigan	Wisconsin	Minnesota	U.S. Total	Ontario	Grand Total
Alewife	_	-	2	2	_	2
Burbot	8,564	6,500	559	15,623	6,162	21,785
Carp	72	_	-	72	_	72
Chubs	92,021	114,416	17,140	223,577	39,509	263,086
Lake herring	23,352	96,655	186,038	306,045	2,002,267	2,308,312
Lake sturgeon	-	_	-	_	1,700	1,700
Lake trout	101,217	254,050	34,736	390,003	419,439	809,442
Lake whitefish	737,838	173,442	_	911,280	364,912	1,276,192
Northern pike	_	_	-	_	3,372	3,372
Pacific salmon	_	_	_	_	8,828	8,828
Round whitefish	1,392	335	I	1,728	46,617	48,345
Smelt	590	99,994	152,456	253,040	38,393	291,433
Suckers	27,878	3,605	4,560	36,043	274,493	310,536
Walleye	_	_	_	_	1,471	1,471
Yellow perch	254	-	_	254	134,409	134,663
Total	993,178	748,997	395,492	2,137,667	3,341,572	5,479,239

Table 1. Lake Superior commercial fish production in pounds for 1982.

26

ANNUAL REPORT OF 1982

Table 1. Lake Superior commercial fish production in pounds for 1982.

L'AURE I. L	ANC Subcine		Table 1. Lake Superior commercial from procasion in prantice in			
				U.S.		Grand
Species	Michigan	Wisconsin	Minnesota	Total	Ontario	Total
Alewife	1	I	2	2	I	2
Burbot	8.564	6,500	559	15,623	6,162	21,785
Carp	72	I	1	72	I	72
Chubs	92,021	114,416	17,140	223,577	39,509	263,086
Lake herring	23,352	96,655	186,038	306,045	2,002,267	2,308,312
Lake sturgeon	I	1	I	I	1,700	1,700
Lake trout	101,217	254,050	34,736	390,003	419,439	809,442
Lake whitefish	737,838	173,442	1	911,280	364,912	1,276,192
Northern pike	I	l	I	ι	3,372	3,372
Pacific salmon	I	t	I	I	8,828	8.828
Round whitefish	1,392	335	1	1,728	46,617	48,345
Smelt	590	99,994	152,456	253,040	38,393	291,433
Suckers	27,878	3,605	4,560	36,043	274,493	310,536
Walleye	I	1	ł	ł	1,471	1,471
Yellow perch	254	I	ł	254	134,409	134,663
Total	993,178	748,997	395,492	2,137,667	2,137,667 3,341,572 5,479,239	5,479,239

Table 2.	Lake	Michigan	commercial	fish	production	in	pounds	for	1982.

		Michigan		W	/isconsin				
Species	Green Bay MM-1	Michigan proper	Total	Green Bay WM-1,2	Michigan proper	Total	Illinois	Indiana	Grand Total
Alewife	1.694.592	733	1,695,325	1,728,588	18,734,676	20,463,264	-	1,307	22,159,896
Bullheads	_	_	_	27.548	_	27,548		-	27,548
Burbot	20,254	11,544	31,798	85,506	119	85,625	-	342	117,765
Carp	-	1.500	1,500	599,488	35,431	634.919	-	_	636,419
Channel catfish	_	2,681	2,681	286	_	286	-	76	3,043
Chubs	7,403	751,733	759,136	9,083	1,905,107	1,914,190	204,978	2,446	2,880,750
Lake herring	-	53	53	_	_	_		17	70
Lake trout	14.869	260,809	275,678	_	_	-	_	388	276,066
Lake whitefish	1.640.957	3,115,512	4.756,469	559,609	613,930	1,173,539	_	74	5,930,082
Northern pike	-	_	_	6,865	_	6,865	-	_	6,865
Pacific salmon	490	344	834	-	_	_	-	824	1,658
Round whitefish	-	168,963	168,963	3,107	57,525	60,632	-	111	229,706
Smelt	1,529.644	762	1,530,406	54,737	267,107	321,844	-	3,430	1,855,680
Suckers	741,317	68,851	810,168	230,113	4,629	234,742	-	6,162	1.051.072
Walleye	794	786	1,580	4	-	4	-	-	1,584
White bass	-	_	_	9,983	_	9,983	_	_	9,983
Yellow perch	36,196	1,850	38.046	576.338	46.796	623,134	84,818	493,143	1,239,141
Total	5,686.516	4,386,121	10,072,637	3,891,255	21.665.320	25,556,575	289,796	508.320	36,427,328

		Michigan	_		Ontai	no		
Species	Huron proper	Saginaw Bay MH-4	Total	Huron proper	Georgian Bay GB-1.2.3.4	North Channel NC-1,2.3	Total	Grand Total
Alewife		1,479	1,479	_			_	1,479
Bowtin	_	504	504	_	240	-	240	744
Buffalo fish	_	1,456	1,456	-	-		~	1,456
Bullheads	_	7,632	7,632	21	647	19	687	8,319
Burbot	740	328	1,068	3,119	9,843	2,931	15.893	16,96
Carp	885	726,262	727,147	28,259	2,852	6,319	37,430	764.577
Channel catfish	6,244	669,414	675,658	39,459	477	196	40,132	715,790
Chubs	_	_	_	\$ 430,532	126,137	36	556,705	556,70
Crappie	_	11,226	11,226	_	_	_		11,220
Garfish	_	309	309		_	-	-	309
Gizzard shad	_	_	_	3,243	_	_	3,243	3,243
Lake herring	2,825	_	2.825	8,155	25.763	8,953	42.871	45.696

Table 3. Lake Huron commercial	fish production	in pounds	for	1982.
--------------------------------	-----------------	-----------	-----	-------

	-	-	3,542	514	4,906	8,962	8,962	
232.743	-	232,743	39,178	1,221	2,995	43,394	276,137	
1.544,876	77.167	1,622,043	1,559,714	171,657	379,087	2,110,458	3,732,501	
_	-		921	4,287	19,106	24,314	24.314	
_	-	-	10,491	232	2.302	13.025	13,025	
_	80,430	80,430	-	_	-	-	80,430	
_	682	682	404	407	875	1,686	2,368	
22,608	15,895	38,503	9,259	20,177	1,591	31,027	69,530	
-	-	-	-	240	48	288	288	
15	35,137	35,152	43,433	_	_	43,433	78,585	
-	27,023	27,023	164	275	_	439	27,462	
-		_	494	83.929	5.070	89,493	89,493	
9,505	141,609	151,114	139,419	43,363	60,787	243,569	394,683	
13.675	-	13,675	258,964	19,376	44,966	323,306	336,981	
_	1,725	1,725	12,671		-	12.671	14.396	
3,147	155,244	158,391	300,806	86,215	87,006	474.027	632,418	
1,837,263	1,953,522	3,790,785	2,892,248	597,852	627,193	4.117.293	7,908,078	
	232.743 1,544,876 - - 22.608 - 15 - 9.505 13.675 - 3,147	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Species	Michigan	New York	Ohio	Pennsylvania	U.S. Total	Ontario	Grand Total
Bowfin	_	_	_	_	_	23,200	23,200
Buffalo	22,474	-	36.054	_	58,528		58.528
Bullheads	58	1.202	63.025	314	. 64,599	49,300	113,899
Burbot	-	***	_	347	347	-	347
Carp	678,096	664	906,296	126	1,585,182	43,208	1,628,390
Channel catfish	20,354	179	217.641	881	239,055	70.017	309,072
Crappie	_	-		-	-	12.014	12.014
Eel	_	_	_	_	-	45	45
Gizzard shad	76,000	980	161,698	7,979	246,657	3,750	250,407
Goldfish	_	_	11,159	_	11,159		11.159
Lake herring	_	40		_	40	_	40
Lake sturgeon	_	_	_	_	-	1.049	1.049
Lake trout	-	_	_	_		3,461	3,461
Lake whitefish	-	7	_	340	347	26,733	27,080
Northern pike	_	_	_		_	53,202	53,202
Pacific salmon	_	-	_	-	-	36,612	36.612
Quillback	1,430	_	113,717	_	115,147	_	115.147
Rock bass	_	295	_	-	295	29,418	29.713
Sheepshead	608	41,112	781,660	241,140	1.064.520	421.223	1,485.743
Sauger	_	_	_	_	_	201	201
Shiners	_	_		7,947	7,947	_	7,947
Smelt	_	1,383	_	17,619	19,002	43,547,365	43,566,367
Suckers	178	20,396	42,231	18,638	81,443	15.043	96,486
Sunfish	-	61,734	_	_	61,734	58,729	120,463
Walleye	_	47,745	_	6.338	54.083	2.020.883	2,074,966
White bass	1,742	30	603,691	73.624	679,087	3,458,005	4,137,092
White perch	-	-	26,935	1,439	28,374	9,347	37.721
Yellow perch	-	118.392	244.934	203,988	567.314	9,186,462	9.753.776
Total	800,940	294,159	3,209,041	580,720	4,884.860	59.069.267	63.954.127

Species	New York	Ontario	Grand Total
Bowfin	70	167	237
Bullheads	40,125	241,264	281,389
Carp	2,368	29,153	31,521
Channel catfish	1,986	25,968	27,954
Crappie	2,777	17,768	20,545
Eel	79,401	64,656	144,057
Gizzard shad	_	242	242
Lake herring	14	4,829	4,843
Lake sturgeon	_	593	593
Lake trout	_	87	87
Lake whitefish	2	22,268	22,270
Northern pike	55	18,535	18,590
Pacific salmon	_	139	139
Rock bass	13,501	12,547	26,048
Round whitefish	_	315	315
Sheepshead	379	6,712	7,091
Smelt	14	81,660	81,674
Suckers	2,776	26,611	29,387
Sunfish	7,682	153,711	161,393
Walleye	54	3,468	3,522
White bass	137	15,795	15,932
White perch	53,612	75,250	128,862
Yellow perch	89,814	1,197,259	1,287,073
Total	294,767	1,998,997	2,293,764

Table 5. Lake Ontario commercial fish production in pounds for 1982.

FISH DISEASE CONTROL

Following a lengthy discussion and the layout of a proposed course of action, an "Early Mortality Sub-Committee" was named. Dr. John Schachte, fish pathologist for New York, was selected to chair the work group. The Sub-committee went right to work, gathered extensive preliminary information and met to review progress in November. A questionnaire to help sort out field data has been circulated.

In an effort to improve communications with the private sector of fish culture and with the public at large, a project was initiated to develop a colorful brochure highlighting the contribution to the advancement of fisheries resources programs made by the Great Lakes Fish Disease Control Program. In addition, committee members, Mr. Clayton Lakes of Ohio and Mr. John Daily of Minnesota, developed an updated listing of fish disease control regulations affecting interstate and international transport of fish. This material will help public and private fish haulers alike and will facilitate compliance with regulatory programs.

GREAT LAKES FISH DISEASE CONTROL COMMITTEE REPORT

J. W. Warren, Chairman Great Lakes Fish Disease Control Committee Fish Disease Control Center, U.S. Fish and Wildlife Service, La Crosse, Wisconsin 54601

The major committee accomplishment of 1982 was the completion of the edited text of "A Guide to Integrated Fish Health Management in the Great Lakes Basin." This new 262-page book will contain 27 chapters written by a total of 19 contributors. It is directed at an audience of fish culturists, fish pathologists, resource administrators, students and interested lay persons. The "Guide" will serve to flesh out the fish health protection guidelines established by the Commission in 1975.

Al Sippel, fish pathologist for the Ontario Ministry of Natural Resources prepared an excellent resume of the objectives and activities of the Great Lakes Fish Disease Control Committee for a workshop on the health of fish populations held in Geneva Park, Ontario in November 1981. The paper was distributed to all Great Lakes agencies and submitted to the American Fisheries Society for publication in the March-April 1982 issue of "Fisheries."

In response to the first known North American outbreak of proliferative kidney disease (PKD), the Committee recommended Commission action to officially list the disease as an Emergency Disease under the provisions of the Great Lakes Fish Disease Control Program. The Commission accepted this recommendation at the 1982 annual meeting, establishing a basin-wide policy to support the prompt implementation of disease eradication procedures in the event PKD is diagnosed in cultured fish in the Great Lakes basin.

Communications between members of the GLFDCC brought to light larger than usual post swim-up losses of fall chinook salmon early in the year. Data were reviewed at the April annual meeting of the committee.

TROUT, SPLAKE, AND SALMON PLANTINGS 35

SUMMARY OF TROUT, SPLAKE, AND SALMON PLANTINGS

Intensive annual plantings of hatchery-reared salmonids continue to be the principal method employed to rehabilitate Great Lakes fisheries. In 1982, about 36 million trout and salmon were planted.

In Lakes Superior, Michigan, Huron, and Ontario, salmon and trout survival is dependent upon sea lamprey control since experience has shown that planting of these species where sea lamprey are abundant results in high mortality of fish and heavy wounding of survivors. In Lake Erie there is no clear evidence that the sea lamprey population causes high mortality of planted salmon and trout; the relatively low numbers of sea lamprey in Lake Erie is usually attributed to the scarcity of suitable streams for spawing, although improved water quality in some streams is increasing the reproductive potential of the sea lamprey.

Most of the rainbow, brook, and brown trout, and all of the Pacific salmon plantings are aimed at the recreational fishery. On the other hand, most lake trout and splake plantings are intended to develop self-sustaining stocks. With anglers pursuing a wide variety of species ranging from salmon and trout to yellow perch and walleye to panfish and bass, it was estimated that the economic impact of the Great Lakes recreational fishery is \$1 billion annually. The economic impact of the non-native commercial fishing industry, which harvests relatively few of the stocked salmonids, has been estimated at \$160 million (Talhelm, 1979).

Article IV(A) of the Convention on Great Lakes Fisheries charges the Great Lakes Fishery Commission to determine measures for continued productivity of desirable fish species in the Convention area. The Commission views securing fish communities based on foundations of self-sustaining stocks as the ultimate goal of this charge, and believes that stocking with hatchery-reared lake trout is an essential step towards achieving self-sustaining lake trout populations—a major Commission objective. It is an objective which is being increasingly realized in Lake Superior, and possibly, on the verge of being realized in Lakes Michigan and Huron, and even Lake Ontario.

Lake trout have been planted annually in Lake Superior since 1958, in 1 ake Michigan since 1965 in Lake Huron and Erie since 1969, and in Lake Ontario since 1972. These fish are provided by the U.S. Fish and Wildlife Service, the Great Lakes states of Michigan, Wisconsin, Minnesota and New York, and the Province of Ontario. Lake trout eggs are largely obtained from brood fish in hatcheries, and, to a lesser extent mature lake trout from inland lakes and Lakes Superior and Ontario. Nearly all trout are reared to yearlings (ca. 30/pound) and planted during the spring and early summer. Some, however, are planted as fingerlings in fall. Despite certain advantages (related to hatchery production) associated with stocking in the fall, the procedure has not been used extensively; studies have shown that jake trout planted in fall as fingerlings generally do not survive nearly as well as those stocked in spring as yearlings. The higher mortality of fallstocked fish is commonly believed to be related to their smaller size at time of planting. The Ontario Ministry of Natural Resources plans to study relative survival rates of 1981-1987 year-classes fingerlings and yearlings in Lake Superior.

To rehabilitate fish stocks in Lake Huron, the Province of Ontario and the State of Michigan originally agreed to plant highly-selected splake. These fish were developed in Ontario through an intensive breeding prograin in which male brook trout were crossed with female lake trout to produce a fast growing fish similar to lake trout in behavior and appearance. and to the brook trout in fast growth and early maturity. Following several generations of selective breeding a splake was developed which grows rapidly, matures at an early age, and inhabits deep water. First plantings were made in 1969 in Ontario waters (mostly yearlings) and in 1970 in Michigan waters (mostly fingerlings). Because of a shortage of highlyselected splake brood fish and the need to expand rehabilitation efforts in U.S. waters of Lake Huron, splake milt also was used to fertilize lake trout egs to produce backcrosses. It was believed these fish would retain the advantages of early maturity and fast growth. The first backcrosses were produced in the fall of 1971 and planted in Lake Huron as yearlings in the spring of 1973, and the program was to have continued. Because of fish disease problems in the U.S. brood stock of splake (chronicled in Annual Reports for 1975 and 1976, Appendix B), lake trout plants were initiated in U.S. waters of Lake Huron in 1973 and continued through 1979. The Province of Ontario continued to plant highly selected splake through 1982 but also made a small planting of lake trout. Survival of Ontario's splake has improved dramatically in recent years, following hatchery cleanup and an adjustment in genetic content in favour of lake trout.

Lake trout broodstock came to be increasingly scrutinized subsequent to the 1980 Stock Concept Symposium, and as early results became available from experimental plantings in Lake Michigan of Green Lake trout, and in Lake Ontario of three strains of lake trout (Clearwater Lake, Lake Superior, and Seneca Lake strains). Choice and handling of broodstock will

doubtlessly figure large in future hatchery programming, and in management plans. (See Management and Research Section.)

Table 1 summarizes annual plantings of lake trout and hybrids in the Great Lakes, and Table 2 details the 1982 plants in each of the Great Lakes. Other small experimental plants of first generation splake and backcrosses have been made by Wisconsin, Michigan, and Minnesota in Lake Superior (Table 3) with the objective of providing a nearshore fishery; these plants are not thought to contribute to offshore populations.

Coho salmon, usually stocked in the spring as yearlings, have been planted annually in Lakes Superior and Michigan since 1966, and in Lakes Huron, Erie, and Ontario since 1968. Table 4 summarizes annual plantings in each of the Great Lakes, and Table 5 details the 1982 coho plantings.

Annual plantings of chinook salmon, usually stocked in the spring as fingerlings, have been made in Lakes Superior and Michigan since 1967, in Lake Huron since 1968, in Lake Erie since 1970, and in Lake Ontario since 1969. Table 6 summarizes annual plantings of chinook salmon in the Great Lakes and Table 7 details the 1982 plantings in each of the Great Lakes.

In 1972, Michigan and Wisconsin inaugurated plants of Atlantic salmon in the Upper Great Lakes. Table 8 summarizes Atlantic salmon plantings in the Great Lakes 1972–1982.

Plantings of rainbow and steelhead trout, brown trout, and brook trout have been continued in the Great Lakes over the years, but were not included in these records prior to 1975 (1976 for brook trout) because of the variability in reporting and difficulty in separating "inland" plantings from "Great Lakes" plantings. Nevertheless, the need for stocking information on these species prompted inclusion of rainbow and steelhead trout, brown trout, and brook trout plantings in the Annual Report. Table 9 summarizes the annual plantings of rainbow and steelhead trout for 1975 through 1982, and Table 10 details the 1982 plantings. Table 11 summarizes annual plantings of brown trout for 1975 through 1982, and Table 12 details the 1982 plantings. Brook trout plantings were included for the first time in 1976 (Table 13). Table 14 details the 1982 plantings of brook trout.

The grid number system developed by Stan Smith and others in the early 1970s, is used in the Annual Report series, in order to assist readers in the location of planting sites. Copies of Great Lakes maps with superimposed numbered grids are available through the Secretariat.

The abbreviations SF, FF, F, Y, and A designate ages of planted fish. Their respective meanings are fingerlings planted in the spring, fingerlings planted in the fall, fingerlings, yearlings, and adults.

Coded wire tag numbers appear under the "Fin Clip/Mark" heading in Table 2 as "CWT (agency code) first data row/second data row."

LITERATURE

Table	1. Annual plantings (in thousands) of lake trout, splake ^{1,2}	
	and backcrosses ³ in the Great Lakes, 1958–1982.	

LAKE SUPERIOR									
Year	Michigan	Wisconsin	Minnesota	Ontario	Total				
1958	298	184	_	505	987				
1959	44	151	_	473	668				
1960	393	211	_	446	1.050				
1961	392	314	_	554	1,260				
	775	493	77	508	1,853				
1962 1963	1,348	311	175	477	2.311				
	1,196	743	220	472	2,631				
1964	780	448	251	468	1,947				
1965	2,218	352	259	450	3,279				
1966	2,059	349	382	500	3,290				
1967	2,260	239	377	500	3.376				
1968	1,860	251	216	500	2.827				
1969	1,944	204	226	500	2.874				
1970	1,055	204	280	475	2.017				
1971	1,055	259	293	491	2,106				
1972	894	239	293	500	1,905				
1973									
1974	888	436	304	465	2.093				
1975	872	493	337	510	2.212				
1976	789	814	345	1,062	3.010				
1977	803	551	350	677	2.381				
1978	855	622	355	630	2,461				
1979	1,055	508	314	526	2.403				
1980	778	522	351	759	2,409				
1981	714	639	312	1.014	2,679				
1982		508	235	1,198	2,835				
Subtotal	26,227	10,036	5,943	14,660	56.864				
		LAKE N	IICHIGAN						
Year	Michigan	Wisconsin	Illinois	Indiana	Total				
1965	1,069	205	-	_	1.274				
1966	956	761	_	-	1.717				
1967	1,118	1,129	90	87	2,424				
1968	855	8 7	104	100	1.876				
1969	877	884	121	119	2,001				
1970	875	900	100	85	1,960				
1971	1,195	945	100	103	2.343				
1972	1,422	1,284	110	110	2,926				
1973	1.129	1,170	105	105	2,509				
1974	1,070	971	176	180	2,397				
1975	1,151	1,055	186	186	2,577				
1976	1,255	1,045	160	164	2,624				
1977	1,057	970	166	177	2,369				
1978	1,304	994	116	175	2,589				
		// 7	110	1 / J					
1979 1980	1,216	943	162	176	2,497				

36

Talhelm, D. R., R. C. Bishop, K. W. Cox, N. W. Smith, D. N. Steinnes, and A. L. W. Tuomi. 1979. Current estimates of Great Lakes fisheries values: 1979 status report. Great Lakes Fishery Commission. Ann Arbor, Michigan. Rep. 79–1: 17 pp. (Mineo.)

Table I. (Cont'd.)								
Year	Michigan	LAKE M Wisconsin	ICHIGAN Illinois	Indiana	Total			
1981	1,459	831	173	172	2,635			
1982	1,305	1,022	204	216	2,746			
Subtotal	20,689	17,181	2,160	2.329	42,355			

LAKE HURON

Ontario

Michigan

Year	Lake trout	Splake	Backcrosses	Lake trout	Splake	Backcrosses	Total
1969	-	_	_	_	35	_	35
1970	-	43	_		247	-	290
1971	-	74	_		468	_	542
1972	-	215	-	-	333	_	548
1973	629	_	486	_	412	-	1,527
1974	793	_	-	_	299	-	1,092
1975	1.053	_		-	523	-	1,576
1976	1.024	-	_		658	_	1.682
1977	1,033	_	250	15	879	61	2,238
1978	1.217	_	_	15	175	-	1,407
1979	1,338	_	-	15	798	-	2,151
1980	1,381	-	-	-	561	-	1,941
1981	1,340	-	_	49	680	-	2,068
1982	1,340	-	_	9	926	-	2,275
Subtotal	11,148	332	736	103	6,994	61	19,372

LAKE ERIE

Year	Pennsylvania	New York	Total
1969	17	_	17
1974	26	_	26
1975	34	150	184
1976	16	186	202
1977	_	125	125
1978	118	118	236
1979	355	355	709
1980	168	339	507
1981	20	20	41
1982	97	139	235
Subtotal	851	1,432	2,282

TROUT, SPLAKE, AND SALMON PLANTINGS

39

		LAKE ONTARIO		
	0	Intario	New York	
Year	Splake	Lake trout	Lake trout	Total
1972	48	_	_	48
1972	39	_	66	105
1974	26	_	644	670
1975	_	-	514	514
1976	6	194	337	537
1977	_	288	298	586
1978	-	200	1,043	1,243
1979	_	201	686	887
1980	_	383	1,194	1,577
1981	_	387	1,146	1,533
1982	-	391	1.259	1,650
Subtotal	119	2,044	7,187	9,350

¹Lake trout \times brook trout hybrid. ²Excludes small experimental splake plants by Michigan and Wisconsin in Lake Superior (see Table 3). ³Lake trout \times splake hybrid, (see text).

Table 2. Plantings of lake trout and splake¹ in the Great Lakes, 1982.

Location	Grid No.	Numbers	Age	Fin Clip/Mark
	AKE SUI	PERIOR-LAKE	TROUT	
Michigan waters				
Anna River	1633	$25,000^{2}$	Y	right ventral
Big Bay Reef	1328	$25,000^{2}$	Y	right ventral
Black River	1413	$25,000^{2}$	Y	right ventral
Copper Harbor	0926	$25,000^{2}$	Y	right ventral
Grand Marais Reef	1437	$25,000^{2}$	Y	right ventral
Laughing Fish Point	1531	$75,300^{3}$	Y	right ventral
Loma Farms	1428	$25,000^{2}$	Y	right ventral
Manitou Island	1028	59,700 ³	Y	right ventral
McLain State Park	1122	$25,000^{2}$	Y	right ventral
Ontonagon River	1318	$25,000^{2}$	Y	right ventral
Partridge Island Reef	1529	65.100^{-3}	Y	right ventral
Pequaming	1323	92,900	FF	adipose-right pectoral
Point Abbaye Reef	1325	$75,000^{2}$	Y	right ventral
Presque Isle Harbor	1529	$75,000^{2}$	Y	right ventral
Shelter Bay	1632	$25,000^{2}$	Y	right ventral
Tahquamenon Island Reef	1544	125.512 ³	FF	adipose-right pectora
Traverse Island Reef	1224	$75,400^{-3}$	Y	right ventral
Union Bay	1316	$25,000^{2}$	Y	right ventral
Subtotal		893,912		
Minnesota waters				
Beaver Bay	1106	33.155^2	FF	adipose dorsal
French River	1302	24,100	Y	right ventral
Grand Marais	811	39,000	FF	dorsal left pectoral
Knife River	1302	39,000	FF	dorsal left pectoral
Two Harbors	1303	100,000	Y	adipose left ventral
Subtotal	1000	235.255		X
Ontario waters				
· · · · · · · · · · · · · · · · · · ·	220	7 2003	V	waht vantral
Battle Island	228	$7,280^{3}$	Y	right ventral
Boone Island	128	3,640 ³	Y	right ventral right ventral
Buck Island South	320	$26,600^{3}$	Y	<u>e</u>
Caribou Island	320	$90,420^{3}$	Y	right ventral right ventral
Cat Island	229	13,186 ³	Y Y	right ventral
Channel Island	229	8,372 ³	Y Y	right ventral
Cobinosh Island	228	3,458 ³	Y Y	right ventral
Coldwell	234	122,829 $7,280^{3}$	Y Y	right ventral
Copper Island	229	7,280 ³ 3,462 ³	r Y	right ventral
Detention Island	234	$3,462^{3}$ $3,462^{3}$	Y Y	right ventral
Foster Island	234	$4,080^3$	Y	right ventral
Harry Island	228	4,000	L	ngiit ventrai

TROUT, SPLAKE, AND SALMON PLANTINGS

Location	Grid No.	Numbers	Age	Fin Clip/Mark
Healey Island	229	8,372 ³	Y	right ventral
Inner Island	320	$35,690^3$	Y	right ventral
ackpine River	475	1,770	6 yr	adipose
ambert Island	320	4,810 ³	Ŷ	right ventral
apoints	1447	40,000	Y	right ventral
Mamainse Point	1245	41,200	Y	right ventral
Maple Island	1446	$43,800^{3}$	Y	right ventral
Mary Island	320	67,340 ³	Y	right ventral
Michipicoten Harbor	744	47,593	Y	right ventral
Minnie Island	228	9,7233	Y	right ventral
Iontreal River	1145	50,000	Y	right ventral
forning Harbour	228	6,1203	Y	right ventral
Vicol Island	128	$6,121^{3}$	Y	right ventral
Nipigon River	124	40	6 yr	adipose
Palette Island	320	$29,890^{3}$	Ŷ	right ventral
apoose Island	418	6,1903	Y	right ventral
apoose Island	418	29.240^{-3}	Ŷ	right ventral
Pie Island	518	$206,220^{3}$	FF	adipose-left pectora
Quarry Island	228	12.167^3	Y	right ventral
Rossport Dock	228	135,180	Ŷ	right ventral
Rossport Point	128	11,305	Ŷ	right ventral
Salter Island	228	25,232 ³	Ý	right ventral
liver Harbor	320	16,000	Ŷ	right ventral
Sinclair Cove	1045	27,415	Ŷ	right ventral
Tracy Shoal	228	8,372	Y	right ventral
Wilson Island	228	13,1813	Ŷ	right ventral
pres Point	235	20,758	Y	right ventral
Subtotal	255	1,197,798	1	light ventral
Wisconsin waters				
Bayfield	1409	113,700	Y	right ventral
Devil's Island	1209	180,0002	FF	dorsal right ventral
axon Harbor	1511	85,800	Y	adipose
Superior Entry	1401	128,400	Y	right ventral
Subtotal	1401	507,900	1	fight vential
Total, Lake Superior		2,834,865		
and the second se				
llinois waters	AKE MI	CHIGAN-LAKE	TROUT	
ulian's Reef	2403	52.000^{3}	FF	both ventral
ulian's Reef	2403	151,800 ³	гг Ү	
Subtotal	240.5		- I	adipose left pectora
Subtotal		203,800		

	Ta	ble 2. (Cont'd.)		
Location	Grid No.	Numbers	Age	Fin Clip/Mark
Indiana waters				
Burn's Harbor	2707	63,000	FF	adipose
Burn's Harbor	2707	76,250	Y	right ventral
East Chicago	2705	38,100	Ŷ	right ventral
Michigan City	2705	38,200	Ŷ	right ventral
Subtotal	2707	215,550		U
Subiotar		215,550		
Michigan waters				
Acme	916	83,200	FF	adipose
Benton Harbor	2509	91,000	Y	right ventral
Charlevoix	616	83,500	FF	adipose
Escanaba	306	45.000^{2}	Y	right ventral
Frankfort	1011	74,700	Y	right ventral
Good Harbor Bay Reef	814	$28,000^{-3}$	FF	right ventral, left ventra
Grand Haven	1911	85,600	Y	right ventral
Greilickville	915	111,000	FF	adipose
Harbor Springs	519	24,900	Y	right ventral
Holland	2111	90,900	Y	right ventral
Little Bay de Noc	306	$45,000^{2}$	Y	right ventral
Ludington	1410	68,000	Y	right ventral
Manistee	1211	90,300	Y	right ventral
Montague	1710	68,000	Y	right ventral
Muskegon Reef	1810	78,500 ³	Y	right ventral
Pentwater Lake	1510	68,000	Y	right ventral
Petoskey	518	50,400	Y	right ventral
South Fox Island	513	$28,000^{3}$	FF	right ventral, left ventra
South Haven	2311	91,000	Y	right ventral
Subtotal		1,305,000		
Wisconsin waters				
Black Can Reef	905	218,2003	Y	adipose left pectoral
	1104	85,000 ³	Ŷ	left pectoral
Kewaunee Manitawaa Baaf	1303	132,870 ³	FF	both ventral
Manitowoc Reef	1303	64,8003	Ŷ	right ventral
Manitowoc Northeast Reef	1803	33.077 ^{2.3}	FF	donal left ventral
	1803	92,700 ³	FF	right pectoral, left ventra
Northeast Reef		180,5003	Y	adipose left pectoral
Northeast Reef	1803 1705	$100,300^3$	Ý	adipose left pectoral
Sheboygan Reef	1703~	100,500	•	warkows rate t
Chahavan	1502	48,000	Y	right ventral
Sheboygan	2102	$16,340^2$	FF	dorsal right ventral
Wind Point Wind Point	2102	50,000	Y	right ventral
	2104	1.021,787	•	
Subtotal Tawl Lake Michiga	2	2,746,137		
Total, Lake Michiga		2,170,151		

TROUT, SPLAKE, AND SALMON PLANTINGS

and the second second	Ta	ble 2. (Cont`d.)		
Location	Grid No.	Numbers	A 60	Fin Clip/Mark
			Age	
		LAKE TROUT	AND SPI	LAKE
Michigan waters (lake th	rout)			
Black River Island	1010	89,700 ³	Y	left pectoral
Detour Ferry Dock	306	44,830	FF	left ventral
Greenbush	1110	90,700	Y	left pectoral
Grindstone City	1412	91,450	Y	left pectoral
Hammond Bay	505	66,000	Y	left pectoral
Harbor Beach	1514	76,000	Y	left pectoral
Lexington Harbor	1915	23,500	FF	right ventral, left ventral
Middle Entrance Reef	303	93,000 ³	FF	left ventral
Middle Island Reef	709	50,300 ³	Y	left pectoral
Oscoda	1210	90,300	Y	left pectoral
Point Lookout	1408	75,550	Y	left pectoral
Port Austin	1411	50.000	Y	left pectoral
Port Sanilac	1814	48,500	Y	left pectoral
Rogers City	607	100,000	Y	left pectoral
Round Island Shoal	302	$100,700^{3}$	FF	right ventral, left ventral
Scarecrow Island	910	89,600 ³	Y	left pectoral
Sturgeon Point Reef	1010	70,0003	Y	left pectoral
Tawas Point	1309	90,300	Y	left pectoral
Subtotal		1,340,430		
Ontario waters (lake tro	ut)			
McGregor Bay	219	2,000	Y	right pectoral
South Bay	418	7,148	Ŷ	right pectoral
Subtotal	110	9,148		fight peetotal
		2,110		
Ontario waters (splake)				
Boucher Point	1126	34,846	Y	left ventral
Cape Dundas	925	38,548	Y	left ventral
Fisher Harbor	3 8	2,400	Y	left ventral
Griffith Island	1024	31,441	Y	left ventral
Heywood Island	319	131,000 ³	Y	left ventral
Jackson Shoal	822	47,405	Y	left ventral
Manitowaning Dock	318	400	Y	left ventral
Ward Lodes	1128	122,1473	Y	left ventral
modifi Rango	1126	100,095	Y	left ventral
Mowat Island	628	43,190	Y	left ventral
Parry Sound Harbor Pyette Point	629	12,024	Y	left ventral
	1025	101.025	Y	left ventral
Sheguiandah Dock South Bay	318	3,880	Y	left ventral
Wall Island	617	14,800	Y	left ventral
siand	628	41.681	Y	left ventral

Table 2. (Cont'd.) Grid Location No. Numbers Fin Clip/Mark Age Y White Cloud Island left ventral 1024 78,178 Vail Point 1025 122.550 Y left ventral Subtotal 925,610 Total, Lake Huron 2,275,188 LAKE ERIE-LAKE TROUT New York waters Barcelona left pectoral 424 15,650 FF Barcelona 424 40.500^{3} adipose-CWT(60)41/50 Y 40,5503 Barcelona 424 Y adipose-CWT(60)41/53 424 8.024 Y Barcelona left pectoral Barcelona 424 33,940 Υ left pectoral - right ventral Subtotal 138,664 Pennsylvania waters New York border 424 15.650 FF left pectoral New York border 522 40.500^{-3} Υ adipose-CWT (60)41/54 New York border 522 40.550³ Υ adipose-CWT (60)41/51 Subtotal 96,700 Total, Lake Erie 235.364 LAKE ONTARIO-LAKE TROUT New York waters Dablon Point adipose-CWT(60)41/52 322 37,600 Υ Dablon Point 322 40,800 adipose-CWT(60)42/2 Y Dablon Point 322 40,550 Υ adipose-CWT(60)41/33 left ventral Dablon Point 322 52,250 Υ Hamlin 713 40,500 adipose-CWT(60)41/60 Υ Hamlin 713 40.550 Υ adipose-CWT(60)41/61

713

713

713

806

806

806

806

806

623

623

623

623

40,500

41.000

55,410

40,550

40.550

40,550

41.000

55,410

40,700

40.500

40.450

41,000

Υ

FF

Υ

Y

Υ

Y FF

Υ

Υ

Υ

Y FF adipose-CWT(60)41/48

adipose-CWT(60)42/6

adipose-CWT(60)41/49

adipose-CWT(60)41/62 adipose-CWT(60)41/63

adipose-CWT(60)42/7

adipose-CWT(60)41/57

adipose-CWT(60)41/56 adipose-CWT(60)41/46

adipose-CWT(60)42/4

left ventral

left ventral

TROUT, SPLAKE, AND SALMON PLANTINCES

Table 2. (Cont'd.)

Location	Grid No.	Numbers	Asge	Fin Clip/Mark
Selkirk	623	55,800	*	lel vemtral
Sodus	818	40,600	*	adipose-CWT(60)41/59
Sodus	818	40,600	*	adipos - CWT(60)41/58
Sodus	818	40,500	**	adipose-CWT(60)41/47
Sodus	818	41,200	FF	adipos -CWT(60)42/5
Sodus	818	55,800	X	left vermtral
Stony Point	422	41,000	FF	adipos CWT(60)42/3
Stony Point	422	40,500	*	adipose-CWT(60)42/1
Stony Point	422	40,500	Y	adipose-CWT(60)41/5
Stony Point	422	40,500	*	adipose-CWT(60)41/43
Stony Point	422	52.250	¥	jelt ventral
Subtotal		1,259,120		
Ontario waters				
Grimsby Harbor	803	89,830	*	adipose right ventral
Main Duck Islands	421	200,043	X	adipose right ventral
Роп Норе	411	101,325	Y	adipose right ventral
Subtotal		391,198		
Total, Lake Ontario		1,650.318		
Great Lakes Total		9,741,872		

¹Lake trout × brook trout hybrid.

²State plants—all other U.S. plants by U.S. Fish and Wildlife Service except for 16,000 fall fingerlings planted by Salmon Unlimited off Wind point, Wisconsin in Lake Michigan. ³Offshore plants.

Hamlin

Hamlin

Hamlin

Niagara

Niagara

Niagara

Niagara

Niagara

Selkirk

Selkirk

Selkirk

Selkirk

Table 3. Plantings of F¹ splake in Lake Superior, 1971 and 1973 to 1982 The 1977 plant was of backcrosses.

	<u></u>	L	Grid	NT		11
Year	State	Location	No.	Numbers	Age	Fin clip
1971	Michigan	Copper Harbor	926	13,199	Y	none
1973	Wisconsin	Bayfield Area	1409	5.000	F	dorsal-left ventral
1974	Wisconsin	Washburn	1509	10,316	Y	dorsal
		Houghton Point	1509	9,782	Y	dorsal
1975	Wisconsin	Pikes Bay	1409	15.000	Y	dorsal-right ventral
1976	Wisconsin	Pikes Bay	1409	18,360	Y	dorsal-right ventral
1977	Michigan	Copper Harbor	926	26,100	F	left pectoral-right ventra
978	Wisconsin	Chequamegon Bay	1509	55.200	F	none
		Cornucopia	1307	26,400	F	none
979	Wisconsin	Bark Point	1306	12,000	F	none
		Bark Point	1306	6,000	Y	none
		Bayfield	1409	10,800	Y	none
		Cornucopia	1307	12.000	F	none
		Houghton Point	1509	12,000	F	none
		Houghton Point	1509	16,200	Y	none
		Madeline Island	1409	12.000	F	none
		Onion River	1409	36.000	F	none
		Onion River	1409	22.700	Y	none
		Port Superior	1409	2.675	Y	none
		Washburn	1509	16.000	Y	none
		Washburn Coal Dock	1509	21.150	Y	none
1980	Wisconsin	Ashland Coal Dock	1509	21,150	Y	none
		Bark Point	1306	12.700	F	none
		Bodins-				
		Houghton Point	1509	25.400	FF	none
		Comucopia Harbor	1307	10.650	Y	none
		Comucopia Harbor	1307	12,700	F	none
		Onion River Mouth	1409	10,650	Y	none
		Onion River Mouth	1409	25.400	F	none
		Superior Entry	1401	8,400	F	none
		Washburn Entry	1509	20,360	Y	none
		Washburn Coal Dock	1509	25.400	F	none
981	Michigan	Marquette Bay	1529	10,000	Y	none
	Minnesota	French River	1302	1,550	FF	none
	Wisconsin	Bayfield	1409	13,750	F	none
		Herbster	1306	13,750	F	none
		Saxon Harbor	1511	13.750	F	none
		Siskwit	1307	13,750	F	none
		Superior	1401	12,000	F	none
		Washburn	1509	111.514	F	none
1982	Michigan	Copper Harbor	926	10,000	Y	none
	· - · · · · · · · · ·	Marquette Bay	1529	10,000	Ŷ	none
		Munising Bay	1634	10,000	Y	none

TROUT, SPLAKE, AND SALMON PLANTINGS	
-------------------------------------	--

ar St	ate	Location	Grid No.	Numbers	Age	2	Fin clip
Wisco	nsin	Ashland	1509	20,000	F	лопе	
		Bark Point	1307	12.000	F	none	
		Cornucopia	1307	15,750	F	none	
		Houghton Point	1409	25,000	F	none	
		Onion Bay	1409	13,000	F	none	
		Superior	1401	10,000	F	none	
		Washburn	1509	30,000	F	none	

TROUT, SPLAKE, AND SALMON PLANTINGS

Table 4.	Annual planting	gs (in thousands)	of coho salmon
	in the Grea	t Lakes, 1966-19	982.

		AKE SUPERIOR	_	
Year	Michigan	Minnesota	Ontario	Total
1966	192	_	_	192
1967	467	-	-	467
1968	382	-	-	382
1969	526	110	20	656
1970	507	111	31	649
1971	402	188	27	617
1972	152	145	_	297
1973	100	35	_	135
1974	455	74	-	529
1975	275	-	-	275
1976	400	-	~	400
1977	627	-	-	627
1978	140	_	-	140
1979	200	_	-	200
1980	350	-	_	350
1981	227	-	_	227
1982	236	-	-	236
Subtotal	5,638	663	78	6,379

	LAKE MICHIGAN						
Year	Michigan	Wisconsin	Indiana	Illinois	Total		
1966	660	_	_	_	660		
1967	1,732	-	-	-	1,732		
1968	1,176	25	_	-	1,201		
1969	3,054	217	_	9	3,280		
1970	3,155	340	48	-	3,543		
1971	2.411	267	68	5	2,751		
1972	2.269	258	96	-	2,623		
1973	2,003	257	-	5	2,265		
1974	2,788	318	125	-	3,231		
1975	2,026	433	46	-	2,505		
1976	2,270	648	179	80	3,177		
1977	2,314	491	179	103	3,087		
1978	1,802	499	105	279	2,685		
1979	3,317	320	118	287	4,044		
1980	2,243	492	169	39	2,943		
1981	1,707	2,451	102	329	2,451		
1982	1.645	216	160	159	2,181		
Subtotal	36,572	7,232	1,395	1.297	44,359		

n	thou	isand	s) of	coho	salmon	
- 1.		1077	1003			

, כ	ι,	01	CULLE	,	0	

Table 4. (Cont'd.)						
Year	LAKE HU Michi					
1968	40					
1969	66					
1970	57					
1971	97	75 975				
1972	24	19 249				
1973	10	00 100				
1974	50	0 500				
1975	62					
1976	69					
1977	4					
1978	8	34 84				
1979	1,08	32 1,082				
1980	37					
1981		35 135				
1981		53 453				
Subto	otal 7,32	26 7,326				

LAKE ERIE Pennsylvania Total New York Ohio Michigan Year 134 _ _ 1971 _ _ 1974 _ _ 1976 1977 1,491 1,832 1,631 1979 1.621 270 1,011 1982 -2,116 1.396 13.796 3,295 6.104 1,588 Subtotal 2,812

	LAKE	ONTARIO	
Year	Ontario	New York	Total
1968	-	40	40
1969	130	109	239
1970	145	294	439
1971	160	122	282
1972	122	230	352
1973	272	240	512
1974	438	217	655
1975	226	812	1,038
1976	166	178	343
1977	313	39	352
1978	201	80	281
1979	286	344	630
1980	77	299	377
1981	363	_	363
1982	112	367	479
Subtotal	3,011	3,371	6,382
Lakes Total coh	o salmon, 1966–19	ะา	73

TROUT, SPLAKE, AND SALMON PLANTINGS

51

Table 5. Plantings of coho salmon in the Great Lakes, 1982.

Location	Grid No.	Numbers	Age	Fin Clip/Mark
	LAKE	SUPERIOR-CO	OHO SALM	10N
Michigan waters				
Black River	1413	49,964	Y	none
Dead River	1529	135,680	Y	none
Sucker River	1439	50,000	Y	none
Subtotal		235,644		
Total, Lake Superio	or	235,644		
	LAKE	MICHIGAN-CO	OHO SALN	ION
Illinois waters				
Chicago,				
Calumet Yacht Club	2703	2,750	Y	none
Chicago.				
Diversey Harbor	2603	375	Y	none
Chicago, Navy Pier	2603	16,450	Y	none
Chicago, Ohio Street	2(0)	16 150		
and Lake Shore Driv Great Lakes Naval	e2603	16.450	Y	none
Training Station	2402	16,200	Y	none
Winnetka, Tower Road		16,450	Ŷ	none
Zion, Kellogg Creek	2302	85.200	ŚF	none
Zion, Kellog Creek	2302	4,800	Ŷ	left ventral
Subtotal		158,675		
ouorora		150,075		
Indiana waters				
Little Calumet River	2705-	92,987	FF	none
Guidinet Mirel	2705	/2./0/	* *	none
Frail Creek	2700	67,394	FF	none
Subtotal		160,381		
Michigan waters				
Grand River	1911	300,044	Y	none
ittle Manistee River	1211	200,000	Ŷ	none
Platte River	912	1,000,000	Y	none
ortage Lake	1111	45,360	Y	none
Sable River	1410	50.053	Y	none
Thompson Creek	211	49.978	Y	none
Subtotal		1,645.435		

		Table 5. (Co	ont'd.)	
Location	Grid No.	Numbers	Age	Fin Clip/Mark
Wisconsin waters				
Kenosha Milwaukee Port Washington Racine Sheboygan Subtotal Total, Lake Michi	2202 1901 1701 2102 1502 gan	19,200 44,800 50,000 33,640 68,400 216,040 2,180,531	Y Y Y Y	none none none none
Michigan waters	LAKI	e huron-co	HO SALM(N
AuSable River East Tawas Flint River Tawas River Subtotal Total, Lake Hurd	1210 1309 1606 1308	270,769 16,800 90,020 75,000 452,589 452,589	FF Y Y Y	none none none none
Michigan waters Detroit River (Yacht Club)	LAF 603	200,000	O SALMON	N
Huron River	702	100,000	Y	none
Subtotal <u>New York wa</u> ters		300,000		
Cattaraugus Creek Chautauqua Creek Eighteenmile Creek Subtotal	327 424 228	69,400 34,600 34,600 138,600	Y Y Y	none none none
Ohio waters Chagrin River Huron River Subtotal	813 1006	109,706 171,910 281,616	Y Y	none none
Pennsylvania waters Crooked Creek Elk Creek Elk Creek Godfrey Run Orchard Beach Run Raccoon Creek Presque Isle Bay Sixteen Mile Creek	619 619 619 523 619 521 523	166,000 100,000 35,600 41,000 121,000 175,000 188,500 100,000	Y Y Y Y Y Y	none none none none none none none

TROUT, SPLAKE, AND SALMON PLANTINGS

Table 5. (Cont'd.)

	Grid			
Location	No.	Numbers	Age	Fin Clip/Mark
Trout Run	620	94,000	Y	none
Twelvemile Creek	522	75,000	Y	none
Twentymile Creek	523	100,000	Y	none
Walnut Creek	620	200,000	Y	none
Subtotal		1.396,100		
Total, Lake Erie		2,116,316		
	LAKE	ONTARIO-CO	DHO SALM	MON
New York waters				
Eighteen-mile Creek	708	31,200	Y	none
Lake Ontario	623	60,000	F	none
North Sandy Creek	523	10,400	Y	none
Oak Orchard Creek	711	31,200	Y	none
Salmon River	623	124,000	Y	none
Salmon River	623	50,000	Y	left ventral
Sandy Creek	713	50,200	Y	none
South Sandy Creek	523	10.400	Y	none
Subtotal		367,400		
Ontario waters				
Bronte Creek	702	25,085	Y	right pectoral
Lake Ontario	603	12,160	Y	adipose
Norval	603	21.878	Y	adipose
Port Credit	603	14.860	Y	adipose
Streetsville	603	25,570	Y	adipose
Twelve Mile Creek	805	12.480	Y	adipose
Subtotal		112.033		
Total, Lake Ontario)	479,433		
Great Lakes Total		5,464.630		

TROUT, SPLAKE, AND SALMON PLANTINGS 55

Table 6. Ai	nnual	plantings (in thousands) of chinook salmon
	in	the Great Lakes, 1967-1982.

		LAKE SUPERIOR		
Year	Michigan	Wisconsin	Minnesota	Total
1967	33	_	_	33
1968	50	_	_	50
1969	50	_	_	50
1970	150	_	_	150
1971	252	_	-	252
1972	472	_	_	472
1973	509	_	-	509
1974	295	-	228	523
1975	253	_	_	253
1976	201	_	291	493
1977	116	35	103	254
1978	150	-	278	478
1979	100	60	341	501
1980	276	60	393	729
1981	250	60	52	362
1982	330	60	920	1,3 3
Subtotal	3.487	275	2.606	6,422

		LAKE MICI	IIUAI		
Year	Michigan	Wisconsin	Indiana	Illinois	Total
1967	802	-	_	_	802
1968	687	-	_	_	687
1969	652	66	_	-	718
1970	1.675	119	100	10	1,904
1971	1,865	264	180	8	2,317
1972	1,691	317	107	24	2,139
1973	2,115	697	_	174	2,986
1974	2,046	616	159	757	3.578
1975	2,816	927	156	381	4,280
1976	1,947	1.276	38	142	3,403
1977	1.576	913	141	347	2,977
1978	2,524	2.017	213	611	5,365
1979	2,307	1,964	531	183	4,984
1980	2,903	2,430	621	152	6,106
1981	2,205	1,848	263	431	4.747
1982	2,685	2,521	313	793	6,312
Subtotal	30,496	15.975	2.822	4,013	53,305

LAKE MICHIGAN

Table	6.	(Cont'd.)
raute	···	(0011 0.7

	LAKE HURON		
Year	Michigan	Total	
 1968	274	274	
1969	250	250	
1970	643	643	
1971	894	894	
1972	515	515	
1973	967	967	
1974	776	776	
1975	655	655	
1976	831	831	
1977	733	733	
1978	1,418	1.418	
1979	1,325	1,325	
1980	1,878	1.878	
1981	1,523	1,523	
1982	2,001	2,001	
Subtotal	14,683	14.683	

LAKE ERIE

Year	Michigan	Ohio	Pennsylvania	New York	Total
1970	_	150	_	_	150
1971	_	180	129	-	309
1972	_	_	150	-	150
1973	305	_	155	125	585
1974	502	_	189	125	816
1975	401	_	483	85	969
1976	300	246	769	65	1,381
1977	302	428	979	362	2,072
1978	_	364	668	206	1,238
1979	_	210	708	-	917
1980	_	350	544	_	894
1981	_	-	449	71	519
1982	-	-	47	280	327
Subtotal	1,810	1,928	5,270	1,319	10,327

	LAKE	ONTARIO		
Year	Ontario	New York	Total	
1969	_	70	70	
1970	-	141	[4]	
1971	89	149	238	
1972	190	427	617	
1973	~	696	696	

57

ANNUAL REPORT OF 1982

LAKE ONTARIO						
Year	Ontario	New York	Total			
1974	225	963	1,188			
1975	_	920	920			
1976	_	593	593			
1977	_	-	_			
1978	393	-	393			
1979	147	222	369			
1980	118	788	906			
1981	12	1,468	1,480			
1982	270	1.808	2,078			
Subtotal	1,444	8,245	9,689			

Table 7. Plantings of chinook salmon in the Great Lakes, 1982.

Location	Grid No.	Numbers	Age	Fin Clip/Mark
		-		•
	SUPER	IOR-CHINOOK	SALM	N
Michigan waters				
Big Iron River	1316	75.000	SF	none
Black River	1413	75.000	SF	none
Dead River	1529	183,000	SF	none
Subtotal		333.000		
Minnesota waters				
Baptism River	1106	141.782	FF	none
Brule River	813	218,765	F	none
Cascade River	811	66,555	FF	none
French River	1302	78,560	FF	none
Lake Superior	1303	2,690	FF	none
Lester River	1302	79.376	FF	none
Temperance River	908	106,218	F	none
Temperance River	908	58,829	FF	none
Rosebush Creek	812	19,890	FF	none
Two Island River	908	101,132	F	none
Two Island River	908	46,284	FF	none
Subtotal		920,081		
Wisconsin waters				
Black River	1401	60,000	Y	none
Total, Lake Superior		1,313,081		
x · · · · ·	MICHIC	SAN OUNION		~
	mente	GAN-CHINOOF	K SALM	N
Illinois waters				
Illinois waters Chicago, Diversey Harbor	2603	355,544	SF	none
Illinois waters Chicago, Diversey Harbor Waukegan	2603 2302	355,544 343,065	SF SF	none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek	2603 2302 2302	355,544 343,065 73,061	SF SF SF	none none none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek	2603 2302	355,544 343,065	SF SF	none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek	2603 2302 2302	355,544 343,065 73,061	SF SF SF	none none none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek Subtotal Indiana waters	2603 2302 2302	355,544 343,065 73,061 21,600	SF SF SF	none none none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek Subtotal Indiana waters Burns Harbor	2603 2302 2302	355,544 343,065 73,061 21,600	SF SF SF	none none none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek Subtotal Indiana waters Burns Harbor East Chicago	2603 2302 2302 2302 2302	355,544 343,065 73,061 21,600 793,270	SF SF SF SF	none none none right ventral
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek Subtotal Indiana waters Burns Harbor East Chicago Michigan City	2603 2302 2302 2302 2302	355,544 343,065 73,061 21,600 793,270 81,153	SF SF SF SF	none none none right ventral none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek	2603 2302 2302 2302 2302 2706 2706	355,544 343,065 73,061 21,600 793,270 81,153 80,052	SF SF SF SF SF	none none right ventral none none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek Subtotal Indiana waters Burns Harbor East Chicago Michigan City	2603 2302 2302 2302 2302 2706 2705 2707	355,544 343,065 73,061 21,600 793,270 81,153 80,052 106,666	SF SF SF SF SF SF	none none right ventral none none none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek Subtotal Indiana waters Burns Harbor East Chicago Michigan City Whiting Subtotal Michigan waters	2603 2302 2302 2302 2302 2706 2705 2707	355,544 343,065 73,061 21,600 793,270 81,153 80,052 106,666 45,200	SF SF SF SF SF SF	none none right ventral none none none
Illinois waters Chicago, Diversey Harbor Waukegan Zion, Kellogg Creek Zion, Kellogg Creek Subtotal Indiana waters Burns Harbor East Chicago Michigan City Whiting	2603 2302 2302 2302 2302 2706 2705 2707	355,544 343,065 73,061 21,600 793,270 81,153 80,052 106,666 45,200	SF SF SF SF SF SF	none none right ventral none none none

Table 7. (Cont'd.)

	Grid	Mumbana	4.02	Fin Clip/Mark
Location	No.	Numbers	Age	Fin Cup/mark
Kalamazoo River	2211	122,160	SF	none
Little Manistee River	1211	600,294	SF	none
Manistee River	1211	200,227	SF	none
Manistique River	211	50,000	SF	none
Muskegon River	1810	275,064	SF	none
No Name Creek	206	59,479	SF	none
Portage Lake	1111	100,768	SF	none
Sable River	1410	200,284	SF	none
St. Joseph River	2509	251,680	SF	none
South Haven	2311	74,995	SF	none
Subtotal		2,685,086		
Wisconsin waters				
Ahnapee River	1004	100,000	F	none
East Twin River	1303	75,000	F	none
Gills Rock	606	150.000	F	none
Kenosha	2202	175,000	F	none
Kewaunee	1104	273,000	F	none
Little Manitowoc River	1303	165.000	F	none
Manitowoc River	1303	98,000	F	none
Menominee River	703	255,000	F	none
Menominee River	703	20,000	F	adipose-CWT(31)16
Milwaukee	1901	200,000	F	none
Oconto Park	802	100,000	F	none
Port Washington	1701	183,000	F	none
Racine	2102	225,700	F	none
Racine	2102	20,000	F	adipose-CWT(31)16
Sheboygan	1502	186,000	F	none
Sheboygan	1502	20,000	F	adipose-CWT(31)16
Sturgeon Bay	905	230,000	F	none
Sturgeon Bay	905	20,000	F	adipose-CWT(31)16
West Twin River	1303	25,000	F	none
	1505		-	-
Subtotal		2.520,700		
Total, Lake Michigan	n	6,312,127		
L	AKE HUR	ON-CHINOOK	SALMO	N
Michigan waters				
AuGres	1408	75.040	SF	none
AuSable River	1210	625.259	SF	none
Carp River	202	50,000	SF	none
Harbor Beach	1514	275.192	SF	none
Harrisville	1110	300.000	SF	none
Lexington	1915	250.080	SF	none
Nagels Creek	606	50.032	SF	none
Port Austin	1411	100.080	SF	none
Port Sanilac	1814	100,064	SF	none

TROUT, SPLAKE, AND SALMON PLANTINGS

	Grid			
Location	No.	Numbers	Age	Fin Clip/Mark
St. Marys River	0000	100.000	SF	none
Tawas City	1308	75,040	SF	none
Subtotal		2.000,787		
Total, Lake Huron		2,000.787		
	LAKE ERII	E-CHINOOK S	ALMON	
New York waters				
Cattaraugus Creek	327	280,000	SF	none
Pennsylvania waters				
Elk Creek	619	17.986	SF	none
Elk Creek	619	4.274	Y	none
Walnut Creek	620	24.400	Y	none
Subtotal		46,660		
Total, Lake Erie		326.660		
L	AKE ONTAI	RIO-CHINOOK	SALMO	N
New York waters				
a contra the decord				
the second se	623	300,000	SF	попе
Beaverdam Brook Black River	623 424	300.000	SF SF	none
Beaverdam Brook		300.000 112.000 112.000		none
Beaverdam Brook Black River Eighteen-mile Creek	424 708	112.000 112.000	SF SF	none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River	424	112,000	SF	none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River	424 708 815	112.000 112.000 169.000	SF SF SF	none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River	424 708 815 720	112.000 112.000 169.000 118.000 142.000	SF SF SF SF SF	none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River	424 708 815 720 806	112.000 112.000 169.000 118.000 142.000 167.000	SF SF SF SF SF SF	none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River	424 708 815 720 806 711	112.000 112.000 169.000 118.000 142.000	SF SF SF SF SF	none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River Sandy Creek	424 708 815 720 806 711 721 623	112,000 112,000 169,000 118,000 142,000 167,000 144,000 311,000	SF SF SF SF SF SF SF	none none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River Sandy Creek	424 708 815 720 806 711 721	112.000 112.000 169.000 118.000 142.000 167.000 144.000	SF SF SF SF SF SF	none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River	424 708 815 720 806 711 721 623 523	112,000 112,000 169,000 118,000 142,000 167,000 144,000 311,000 123,000	SF SF SF SF SF SF SF SF	none none none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River Sandy Creek Sodus Bay Subtotal Ontario waters	424 708 815 720 806 711 721 623 523	112.000 112.000 169.000 118.000 142.000 167.000 144.000 311.000 123.000 110.000	SF SF SF SF SF SF SF SF	none none none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River Sandy Creek Sodus Bay Subtotal Ontario waters Bronte Creek	424 708 815 720 806 711 721 623 523	112.000 112.000 169.000 118.000 142.000 167.000 144.000 311.000 123.000 110.000	SF SF SF SF SF SF SF SF	none none none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River Sandy Creek Sodus Bay Subtotal Ontario waters Bronte Creek Credit River	424 708 815 720 806 711 721 623 523 819	112.000 112.000 169.000 118.000 142.000 167.000 144.000 311.000 123.000 110.000 1.808.000	SF SF SF SF SF SF SF SF SF	none none none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River Sandy Creek Sodus Bay Subtotal Ontario waters Bronte Creek Credit River	424 708 815 720 806 711 721 623 523 819	112.000 112.000 169.000 118.000 142.000 167.000 144.000 311.000 123.000 110.000 1.808.000	SF SF SF SF SF SF SF SF SF	none none none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River Sandy Creek Sodus Bay	424 708 815 720 806 711 721 623 523 819 602 602	112.000 112.000 169.000 118.000 142.000 167.000 144.000 311.000 123.000 110.000 1.808.000	SF SF SF SF SF SF SF SF SF	none none none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Salmon River Sandy Creek Sodus Bay Subtotal Ontario waters Bronte Creek Credit River Twelve Mile Creek	424 708 815 720 806 711 721 623 523 819 602 602	112.000 112.000 169.000 118.000 142.000 167.000 144.000 311.000 123.000 110.000 1.808.000 1.808.000 165.840 54.046 50.000	SF SF SF SF SF SF SF SF SF	none none none none none none none none
Beaverdam Brook Black River Eighteen-mile Creek Genesee River Little Sodus Bay Niagara River Oak Orchard Creek Oswego River Satmon River Samon River Sandy Creek Sodus Bay Subtotal Ontario waters Bronte Creek Credit River Twelve Mile Creek Subtotal	424 708 815 720 806 711 721 623 523 819 602 602	112.000 112.000 169.000 118.000 142.000 142.000 144.000 311.000 123.000 110.000 1.808.000 1.65.840 54.046 50.000 269.886	SF SF SF SF SF SF SF SF SF	none none none none none none none none

Table 8. Plantings of Atlantic salmon in the Great Lakes, 1972-1982.

Үеаг	State	Location	Grid No.	Numbers	Age	Fin Clip/Mark
		LAI	KE SUPER	RIOR		
1972	Wisconsin	Bayfield	1409	20,000	Y	adipose-left ventral
1973	Wisconsin	Bayfield	1409	20,000	Y	right ventral
1976	Michigan	Cherry Creek	1529	9,1064	Y	none
1978	Wisconsin	Pikes Creek	1409	36,772	Y	none
980	Minnesota	French River	1302	7,5841	Y	left ventral
1982	Minnesota	French River	1302	8,284	Y	adipose
	Minnesota	French River	1302	9,668	Y	adipose-left ventral
	Minnesota	French River	1302	234	А	left pectoral
	Total			111,648		

LAKE MICHIGAN

1972MichiganBoyne River616 10.000^4 Ynone1973MichiganBoyne River616 $15,000^4$ Ynone1974MichiganPlatte River616 7.308^4 Yadipose1974MichiganPlatte River616 14.555^4 Ynone1975MichiganBoyne River616 18.742^4 Ynone1976MichiganBoyne River616 20.438^4 Ynone1976MichiganBoyne River616 20.438^4 Ynone1977MichiganPere Marquette River1410 7.131^2 Yleft ven1977MichiganPere Marquette River1211 4.500^2 Yleft ven1978MichiganLittle Manistee River1211 2.997^4 Yright ve1978MichiganLittle Manistee River1211 5.000^2 Yleft pecPere Marquette River141014.880^3Yleft pecPere Marquette River1211 10.000^4 Yright pe1981MichiganManistee River1211 19.529^4 Yleft ven	
1974MichiganPlatte River Boyne River6167.3084Y adipose none1975MichiganBoyne River61614.5554Y none1975MichiganBoyne River61618.7424Y none1976MichiganBoyne River61620.4384Y none1976MichiganBoyne River61620.4384Y none1977MichiganBoyne River61620.4384Y none1977MichiganPere Marquette River14107.1312Y right ver Little Manistee River12114.5002Y right ver Little Manistee River1978MichiganLittle Manistee River12112.9974Y right ver Little Manistee River12115.0002Y right ver Little Manistee River1978MichiganLittle Manistee River12115.0002Y right per Pere Marquette RiverY right per Pere Marquette River141014.8803Y right per right per Pere Marquette River121110.0004Y right per right per Pere Marquette RiverY left per Little Manistee River121119.5294Y right per right per Pere1981MichiganManistee River121119.5294Y right per right per Per ref121119.5294Y right per right per right per Per Per Per Per Per Per Per Per Per Per Per Per Parameter121119.5294Y right per Per Per Per Per Per <b< td=""><td></td></b<>	
Boyne River616 14.555^4 Ynone1975MichiganBoyne River616 18.742^4 Ynone1976MichiganBoyne River616 20.438^4 Ynone1976MichiganBoyne River616 20.438^4 Ynone1977MichiganPere Marquette River1410 7.131^2 Yleft ven1977MichiganPere Marquette River1211 4.500^2 Yleft ven1978MichiganLittle Manistee River1211 2.997^4 Yright ven1978MichiganLittle Manistee River1211 5.000^2 Yleft pecPere Marquette River141014.880^3Yleft pecPere Marquette River1211 $10,000^4$ Yright pec1981MichiganManistee River1211 19.529^4 Yleft ven	
1975MichiganBoyne River61618,7424Ynone1976MichiganBoyne River61620,4384Ynone1976MichiganBoyne River61620,4384Ynone1624Aleft ven1624Aleft ven1977MichiganPere Marquette River14107,1312Yleft ven1977MichiganPere Marquette River12114,5002Yleft venPere Marquette River12112,9974Yright ven1978MichiganLittle Manistee River12115,0002Yleft pecPere Marquette River12115,0002Yleft pecPere Marquette River121114,8803Yleft pecPere Marquette River121110,0004Yright pecPere Marquette River121110,0004Yright pecPere Marquette River121110,0004Yright pec1981MichiganManistee River121119,5294Yleft ven	
1976MichiganBoyne River616 20.438^4 Ynone1976MichiganBoyne River616 20.438^4 Ynone1624Aleft ven1977MichiganPere Marquette River1410 7.131^2 Yleft ven1977MichiganPere Marquette River1211 4.500^2 Yleft venPere Marquette River1211 3.961^4 Yright ven1978MichiganLittle Manistee River1211 2.997^4 Yright ven1978MichiganLittle Manistee River1211 5.000^2 Yleft pecPere Marquette River141014.880^3Yleft pecPere Marquette River121110.000^4Yright pecPere Marquette River121119.529^4Yleft ven1981MichiganManistee River121119.5294Yleft ven	
1976MichiganBoyne River61620,4384Ynone1977MichiganSouth Haven23111084Aleft ven1977MichiganPere Marquette River14107,1312Yleft ven1977MichiganPere Marquette River12114,5002Yleft venPere Marquette River12114,5002Yleft venPere Marquette River12112,9974Yright ven1978MichiganLittle Manistee River12115,0002Yleft pecPere Marquette River141014,8803Yleft pecPere Marquette River121110,0004Yright pecPere Marquette River121110,0004Yright pec1981MichiganManistee River121119,5294Yleft ven	
1624Aleft ven1977MichiganPere Marquette River14107,1312Yleft ven1977MichiganPere Marquette River12114,5002Yleft venLittle Manistee River12114,5002Yleft venPere Marquette River12112,9974Yright venLittle Manistee River12112,9974Yright ven1978MichiganLittle Manistee River12115,0002Yleft pecPere Marquette River141014,8803Yleft pecPere Marquette River121110,0004Yright pecPere Marquette River141016,3224Ynight pe1981MichiganManistee River121119,5294Yleft ven	ntral
1977MichiganSouth Haven23111084Aadipose1977MichiganPere Marquette River14107,1312Yleft venLittle Manistee River12114,5002Yleft venPere Marquette River14103,9614Yright venLittle Manistee River12112,9974Yright ven1978MichiganLittle Manistee River12115,0002Yleft pecPere Marquette River141014,8803Yleft pecPere Marquette River121110,0004Yright per1981MichiganManistee River121119,5294Yleft ven	
 1977 Michigan Pere Marquette River 1410 7,131² Y left ven Little Manistee River 1211 4,500² Y left ven Pere Marquette River 1211 3,961⁴ Y right ve Little Manistee River 1211 2,997⁴ Y right ve Little Manistee River 1211 5,000² Y left pec Pere Marquette River 1410 14,880³ Y left pec Little Manistee River 1211 10,000⁴ Y right pe Pere Marquette River 1410 16,322⁴ Y right pe Pere Marquette River 1211 19,529⁴ Y left ven 	tral
Little Manistee River 1211 4.500 ² Y left ven Pere Marquette River 1410 3.961 ⁴ Y right ve Little Manistee River 1211 2.997 ⁴ Y right ve Little Manistee River 1211 5.000 ² Y left pec Pere Marquette River 1410 14.880 ³ Y left pec Little Manistee River 1211 10.000 ⁴ Y right pe Pere Marquette River 1410 16.322 ⁴ Y right pe Pere Marquette River 1211 19.529 ⁴ Y left ven	
Pere Marquette River 14103,9614Yright ver1978MichiganLittle Manistee River 12112,9974Yright ver1978MichiganLittle Manistee River 12115,0002Yleft pecPere Marquette River 141014,8803Yleft pecLittle Manistee River 121110,0004Yright perPere Marquette River 141016,3224Yright per1981MichiganManistee River121119,5294Y	tral
1978MichiganLittle Manistee River12112.9974Yright ve1978MichiganLittle Manistee River12115.0002Yleft pecPere Marquette River141014.8803Yleft pecLittle Manistee River121110.0004Yright pePere Marquette River141016.3224Yright pe1981MichiganManistee River121119.5294Yleft ven	tral
1978MichiganLittle Manistee River1211 5.000^2 Yleft pecPere Marquette River141014.8803Yleft pecLittle Manistee River121110.0004Yright pePere Marquette River141016.3224Ynight pe1981MichiganManistee River121119.5294Yleft ven	ntral
Pere Marquette River 1410 14.880 ³ Y left per Little Manistee River 1211 10.000 ⁴ Y right per Pere Marquette River 1410 16.322 ⁴ Y right per 1981 Michigan Manistee River 1211 19.529 ⁴ Y left ven	ntral
Little Manistee River 1211 10,000 ⁴ Y right pe Pere Marquette River 1410 16,322 ⁴ Y right pe 1981 Michigan Manistee River 1211 19,529 ⁴ Y left ven	oral
Pere Marquette River 1410 16.322 ⁴ Y right pe 1981 Michigan Manistee River 1211 19.529 ⁴ Y left ven	oral
1981 Michigan Manistee River 1211 19.5294 Y left ven	ctoral
	ctoral
	tral
Petoskey 519 29 ⁴ A none	
Little Manistee River 1211 25,030 ¹ Y adipose	
Pere Marquette River 1410 20,000 ¹ Y adipose	
Total 219,122	

TROUT, SPLAKE, AND SALMON PLANTINGS

61

Table 8. (Cont'd.)

Year	State	Location	Grid No.	Numbers	Age	Fin Clip/Mark
		LAKE	E HUR	DN NC		
1972 1982	Michigan	Au Sable River Thunder Bay (Part Pt Thunder Bay (Part Pt Thunder Bay (Part Pt	.) 809	9,000 ⁴ 29,694 ⁴ 600 ⁴ 110 ⁴	Y FF A FF	none none none left ventral
	Total		-	39.404		lett ventral
Great	Lakes Total.	1972-1982		351,856		

[†]Landlocked. ²Atlantic salmon cross. ³Swedish strain.

⁴Quebec strain.

60

TROUT, SPLAKE, AND SALMON PLANTINGS 63

Year	 Michigan	AKE SUPERIOR Wisconsin	Minnesota	Total
1975	25	61	228	314
1976	36	400	9	445
1977	31	73	211	315
1978	20	116	88	225
1979	_	156	228	384
1980	66	119	471	656
1981	55	95	-	150
1982	45	12	990	1.048
Subtotal	278	1.032	2,225	3,537

Table 9. Annual plantings (in thousands) of rainbow, steelhead, and palomino¹ trout in the Great Lakes, 1975-1982.²

	LAKE MICHIGAN							
Year	Michigan	Wisconsin	Indiana	Illinois	Total			
1975	701	397	217	253	1.568			
1976	601	964	217	45	1,827			
1977	305	683	48	276	1,312			
1978	1,151	613	130	40	1.933			
1979	981	1,211	182	215	2.589			
1980	1,311	1.137	70	113	2,630			
1981	558	1,007	230	186	1,981			
1982	1,066	1,042	248	170	2,525			

7,054

1,342

16,365

1,298

LAKE HURON Total Ontario Michigan Year 33 47 75 3,261 2,439 Subtotal

Table	9.	(Cont	'd.)
-------	----	-------	------

		Year	KE ST. CLA Michigan	Total		
	21 C - 1007-0 - 4 -					
		1982	40	40		
			LAKE ERIE			
	Michigan	Ontorio	New York	- Ohio	Pennsylvania	Tota
Year	Michigan	Ontario			Pennsylvania	TOTA
975	10	223	_	277	19	529
976	60	250	25	196	113	644
977	10	287	13	247	181	737
1978	30	51	19	140	117	357
1979	_	366	29	290	249	933
1980	50	433	72	202	531	1,287
1981	50	12	86	131	456	734
1982	45	23	37	234	461	800
Subtotal	255	1.645	281	1.717	2,127	6,021
		I	AKE ONTAR	10		
	Vata				Tatal	
1	Year	New Y	Ork	Ontario	Total	
	1975	25	2	29	282	
	1976 186		36	108	295	
	1977	144		110	254	
	1978	31	3	121	434	
	1979	32	.5	111	436	
	1980			734		
	1981			81 564		
	1982	25		68	322	
	Subtotal	2,71	5	1,362	4,080	
-						

¹Rainbow \times W. Virginia Golden hybrid (small numbers planted by Pennsylvania only). ²Excluding eggs and fry.

Subtotal

6,674

64

ANNUAL REPORT OF 1982

Table 10. Plantings of rainbow, steelhead, and palomino1 trout in the Great Lakes. 1982.

Location	Grid No.	Numbers	Age	Fin Clip/Mark
LAKE SUPERIO		BOW AND	STEEL	HEAD TROUT
Michigan waters (steelhead)	trout)			
Black River	1413	10,046	Y	none
Chocolay River	1530	10.000	Y	none
Ravine River	424	10,000	Y	none
Two Hearted River	[44]	15,015	Y	none
Subtotal		45,061		
Minnesota waters (rainbow t	(rout)			
Baptism River	1106	26,800	Y	adipose-right ventra
Beaver River	1106	9,935	Y	adipose-right ventra
Brule River	813	21,292	Y	adipose-right ventra
Cascade River	811	24,145	Ŷ	adipose-right ventra
French River	1302	5,823	Y	adipose-left ventral
Lake Superior	1303	44,684	Ŷ	adipose-right ventra
Split Rock River	1106	10.000	Ŷ	adipose-right ventra
Subtotal		142,679		
Minnesota waters (steelhead	trout)			
Baptism River	1106	188,638	F	none
Beaver River	1106	75,843	F	none
Brule River	813	42,234	F	none
Cascade River	811	45,491	Ē	none
Deer Yard Creek	811	10,600	F	none
Devils Track River	812	35,000	F	none
Flute Reed River	814	29.150	F	none
French River	1302	108,177	F	none
Jonvick Creek	910	5,000	F	none
Onion Creek	909	15,000	F	none
Splitrock River	1106	75,843	F	none
Stewart River	1204	61,283	F	none
Stone Creek	813	5,300	F	none
Sucker River	1302	100,000	F	none
Temperance River	908	50,000	F	none
Subtotal	2007	847,559	. *	none
Wisconsin waters (rainbow t	POINT)			
	,	10 000	17	
Amnicon	1402	12.300	F	none
Total, Lake Superior		1,047,599		

minors waters (rambow trout)			
Chicago.				
Calumet Yacht Club	2703	4,660	Y	none
Chicago. Diversey Harbor	2603	750	Y	none
Chicago, Navy Pier	2603	25.550	Y	none
Chicago, Navy Pier	2703	1,000	F	none

TROUT, SPLAKE, AND SALMON PLANTINGS

Table 10 (Cont'd)

	Table	10. (Cont	d.)	
	Grid			
Location	No.	Numbers	Age	Fin Clip/Mark
hicago, Ohio Street and				
Lake Shore Drive	2603	25,550	Y	none
Great Lakes Naval				
Training Station	2402	25,965	F	none
reat Lakes Naval	2 / 02	(0.02-	.,	
Training Station	2402	60,925	Y	none
Winnetka	2502	25,550	Y	none
Subtotal		169.950		
ndiana waters				
ittle Calumet River	2705-			
and the second sec	2706	70,846	FF	none
ittle Calumet River	2705-	- 14 - 5		
	2706	59,132	Y	попе
Frail Creek	2707	46,096	FF	none
rail Creek	2707	71.635	Y	none
Subtotal		247,709	-	
lichigan waters (steelhead	trout)			
		10,000	V	
Bear River	519	10,000	Y	none
Betsie River Big Cedar River	1011 504	15,000	Y Y	none
lig Rabbit River	2211	10,000	Y	none
Boardman River	915	10,000 15,000	Y	none
Crockery Creek	1911	5,000	Y	none
lk River	816	10.000	Ý	none
ish Creek	1911	50,000	FF	none
ish Creek	1911	5,000	Y	none
lat River	1911	5,000	Ŷ	none
lat River	1911	25,000	FF	none
alien River	2708	9,000	Y	none
irand River	1911	35,048	Y	попе
rand River	1911	110,000	FF	none
alamazoo River	2211	20.011	Y	none
ittle Manistee River	1211	100,000	FF	fluoroscein dye
ittle Manistee River	1211	27,000	Y	fluoroscein dye
ittle Manistee River	1211	3,000	Y	adipose-left ventral
ooking Glass River	1911	100,000	FF	none
ooking Glass River	1911	10,000	Y	none
lanistee River lanistique River	1211	30,000	Y	adipose-right ventral
luskegon River	211	10,000	Y	none
aw Paw River	1810	50,022	Y	none
eritwater River	2509	10.000	Y	none
Ogue River	1510 1911	5.000 15.000	Y Y	none none
uby Creek	1911	5.000	Y Y	none
t. Joseph River	2509	300,000	FF	none
Joseph River	2509	27,000	Y	none
outh Haven	2311	10.046	Ý	none
Tompson Creek	211	10.000	Ý	none
hite River	1710	20,000	Ý	none
THE RIVE!	1710			

Table 10. (Cont'd.)

Location	Grid No.	Numbers	Age	Fin Clip/Mark
Wisconsin waters (rainbow	trout)			
Algoma	1004	25,585	F	none
Bailey's Harbor	706	11,000	Y	none
Braunsdorf Beach	905	4,000	F	none
Coast Guard Station	905	30.315	F	none
Coast Guard Station	905	6.000	Y	none
Kenosha	2202	53,536	F	none
Kenosha	2202	49,100	Y	none
Kewaunee	1104	25,585	F	none
Kewaunee	1104	28,450	Y	none
Little River	703	46,424	F	none
Manitowoc River	1303	6,200	F	none
Manitowoc River	1303	12.215	Y	none
Menominee River	703	5,000	Y	none
Milwaukee	1901	35,200	F	none
Milwaukee	1901	67,000	Y	none
Moonlight Bay	706	8,400	Y	none
Oconto Park	802	20,907	F	none
Oconto Park	802	8,300	Y	none
Peshtigo	803	10,800	Y	none
Port Washington	1701	13,470	F	none
Port Washington	1701	67,200	Y	none
Racine	2102	74.784	F	none
Racine	2102	85,400	Y	none
Sheboygan	1502	216,414	F	none
Sheboygan	1502	69.758	Y	none
Sturgeon Bay	905	6.000	Y	none
Two Rivers	1303	29,385	F	none
Two Rivers	1303	11.200	Y	none
Wester's	805	14,000	Y	none
Subtotal		1,041,628		
Total. Lake Michigan		2,525,414		

LAKE HURON-RAINBOW AND STEELHEAD TROUT Michigan waters (rainbow trout)

East Tawas	1309	33,700	Y	none
Michigan waters (steelhea	id trout)			
AuSable River	1210	50.035	Y	none
AuSable River	1210	81,013	FF	none
Carp River	202	10.003	Y	none
Cheboygan River	403	10.017	Y	none
Pigeon River	1510	13,503	Y	none
Pinnebog River	1411	10,098	Y	none
Rifle River	1507	100,000	FF	none
St. Marys River	0000	10,003	Y	none
Thunder Bay	809	20,009	Y	none
Whitney Drain	1408	30,000	FF	none
Subtotal		334,681		

TROUT, SPLAKE, AND SALMON PLANTINGS

67

	Table	e 10. (Cont`c	1.)	
	Grid No.	Numbers	Age	Fin Clip
Location				
Ontario waters (rainbow trout)				
Samia Harbor	2015	40,000	Y Y	none
Southampton	1221	35,000	Ŷ	none
Subtotal		75,000		
Total, Lake Huron		443,381		
	CLA	IR-STEELI	HEAD	TROUT
Michigan waters				
St. Clair River.	0000	20,000	V	-)
Belle River St. Clair River	0000	20,000	Y	none
Mill Creek	0000	20,000	Y	none
Subtotal		40,000		
Total, Lake St. Clair		40,000		
LAKE ERIE-RAINBOW A Michigan waters (steelhead trout		STEELHEA	.D. ANI	D PALOMINO TROUT
Huron River	702	45,049	Y	none
New York waters (steelhead tro	out)			
Cattaraugus Creek,	,			
Derby Cr., Spooner Bk.,				
Connoisarauley Cr.	327	22,000	SF	none
Chautauqua Creek	424	15,000	SF	adipose
Subtotal		37,000		
Ohio waters (rainbow trout)				
Chagrin River	813	70,000	F	none
Conneaut Creek	718	58,680	F	none
Grand River Vermilion River	814	93,200	F	none
	1007	11,700	F	none
Subtotal		233,580		
Ontario waters (rainbow trout)				
Big Creek	318	15,000	Y	none
Big Creek Clear Creek	318	3,000	F	none
Hay Creek	318	3,000	F	none
Subtotal	318	1.900	F	none
		22,700		
Pennsylvania waters (rainbow tr	out)			
Concerne (Indirection in	718	480	Y	none
Concerned Tables Due			* /	
Conneaut Creek, Taylor Run	718	7,310	Y	none
Conneaut Creek, Taylor Run Conneaut Creek, Temple Run Conneaut Creek, Temple Run Conneaut Creek, West Breach	718 718	977	2 yrs	none
Conneaut Creek, Taylor Run Conneaut Creek, Temple Run Conneaut Creek, Temple Run Conneaut Creek, West Branch Crooked Creek.	718 718 718	977 228	2 yrs Y	none
Conneaut Creek, Taylor Run Conneaut Creek, Temple Run Conneaut Creek, Temple Run	718 718	977	2 yrs	none

	Table	10. (Cont'	d.)	
	Grid			
Location	No.	Numbers	Age	Fin Clip/Mark
Elk Creek, Little Elk Creek	619	410	Y	none
Twenty Mile Creek	523	3.980	2 yrs	none
Walnut Creek	620	3,300	F	none
Subtotal		30,020		
Pennsylvania waters (steelhead	trout)			
Elk Creek	619	50,000	Y	none
Godfrey Run	619	94,000	Y	none
Lake Érie	620	47,000	Y	none
Sixteen Mile Creek	523	50,000	Y	none
Trout Run	620	89,700	Y	none
Twelve Mile Creek	522	50,000	Y	none
Walnut Creek	620	50,000	Y	none
Subtotal		430,700		
Pennsylvania waters (palomino	rainbov	v trout)		
Crooked Creek	619	100	Y	none
Elk Creek	619	615	Y,3yrs	none
Subtotal		715		
Total, Lake Erie		799,964		
LAKE ONTARIO New York waters (rainbow tro		IOW AND	STEELH	EAD TROUT
Fourmile Creek	806	6,100	Y	none
Hamlin Beach	713	21,510	FF	none

Fourmile Creek	806	6.100	Y	none
Hamlin Beach	713	21,510	FF	none
Hamlin Beach	713	8,490	FF	adipose-left ventral
Irondequoit Creek	815	10,700	Y	none
Keg Creek	709	6,300	Y	none
Olcott Harbor	708	10,000	FF	none
Sandy Creek	713	6,800	Y	none
Selkirk Shores State Park	623	18,000	FF	none
Sodus Point	819	18.500	FF	none
Sodus Point	819		, FF	adipose-left ventral
Twelvemile Creek	707	8.000	Y	none
Wilson Harbor	707	4,260	FF	adipose-left ventral
Wilson Harbor	707	5,740	FF	none
Subtotal		134,090		
New York waters (steelhead t	rout)			
Beaverdam Brook	0.53-8	114,150	Y	left ventral
Spring Brook Reservoir	P6-2-	4,800	FF	left ventral-
	Ont 53			left maxillary
Subtotal	-	118,950		
Ontario waters (rainbow trout))			
Ontario waters (rainbow trout) Credit River	603	68,466	Y	none
· · · · ·		68,466	Y	none

¹ Rainbow x W. Virginia Golden hyrid (small numbers planted by Pennsylvania only).

TROUT, SPLAKE, AND SALMON PLANTINGS

Table 11. Annual plantings (in thousands) of brown and tiger¹ trout in the Great Lakes, 1975-1982.

Lan		LAKE SUPE	RIOR		
Year Michigan		Wiscons	in	Minnesota	Tota
		103		108	246
1976	35	43		10	88
1977	40	62		31	133
1978	_	94		9	103
1979	15	110		6	131
1980	-	85		5	90
	10	73		_	83
1981 1982	15	68		_	83
Subtotal	150	638	_	169	957
		LAKE MICH	HIGAN		
Year	Michigan	Wisconsin Illin		Indiana	Tota
1975	279 356		10	20	665
1976	666	292	94	199	1,25
1977	226	802	42	109	1.180
1978	150	1,208	13	131	1.503
1979	199	960	1	69	1,228
1980	105	1,046	24	116	1,292
1981	32	1,014	65	58	1.169
1982	300	1,821	18	_	1.904
Subtotal	1,957	7,499	267	702	10,19
		LAKE HU	RON		
	Year	Michi	_	Total	
	1975	15	5	155	
	1976	44		447	
	1977	21		210	
	1978	25		258	
	1979		ŏ	90	
	1980		Ő	90	
	1981		5	45	
	1982	25		250	

1.545

48

LAKE ST. CLAIR Michigan

Subtotal

Year

1982

1,545

Total

TROUT, SPLAKE, AND SALMON PLANTINGS

71

Table 12. Plantings of brown and tiger¹ trout in the Great Lakes, 1982.

	Grid No.	Numbers	Age	Fin Clip
Location				
	SUPERIOR-	BROWN TR	OUT	
Michigan waters		10 000	CC.	
Marquette Bay	1529 1634	10.000 5,000	FF FF	none
Munising Bay	1034			none
Subtotal		15,000		
Wisconsin waters				
Ashland	1509	35,000	F	none
Ashland	1509	32,000	Y	none
Saxon Harbor	1511	1,120	Y	none
Subtotal		68,120		
Total, Lake Superior		83,120		
a dest				
LAKE	E MICHIGAN	-BROWN TI	ROUT	
Illinois waters				
Great Lakes Naval			_	
Training Station	2402	18,300	F	none
Mishing water				
Michigan waters	1011	20,000	FF	none
Betsie River	1011 915	40,000	FF	none
East Grand Traverse Bay Galien River	2708	10,000	FF	none
Greilickville	915	40,000	FF	none
Harbor Springs	519	25,000	FF	none
Henes Park	703	10,000	FF	none
Kalamazoo River	2211	10,000	FF	none
Ludington	1410	20,000	FF	none
Manistee	1211	20,000	FF	none
Muskegon Lake Outlet	1810	15,000	FF	none
Pine River	616	40,000	FF	none
St. Joseph River	2509	10,000	FF	none
Saunders Point	306	20,000	FF FF	none
South Haven	2311	10,000	FF	none
Wells State Park	504	10,000	LL	none
Subtotal		300,000		
Wisconsin waters				
Algoma	1004	79.000	F	none
Bailey's Harbor	706	10.000	F	none
Dalley's Harbor	706	4,470	Y	none
Brauns Dorf Beach	905	24,200	F	none
Brauns Dorf Beach	905	7,700	Y F	попе
Egg Harbor	705	30,000	г Ү	none
Egg Harbor Ephraim	705 605	15,600 10,000	F	none
Ephraim	605	9,200	Y	none
Fish Creek	705	30,000	Ê	none
Fish Creek	705	16,800	Ŷ	none
Stook				

ANNUAL REPORT OF 1982

LAKE ERIE										
Year	Ohio	Pennsylvania	New York	Total						
1975	_	7	26	33						
1976	_	13	67	78						
1977	-	49	125	174						
1978	28	34	-	62						
1979	~*	51	26	77						
1980	32	46	50	128						
1981	35	41	34	111						
1982	39	41	138	217						
Subtotal	134	280	466	880						

LAKE ONTARIO								
Year	New York	Ontario	Total					
1975	371	-	371					
1976	311	_	311					
1977	353	_	353					
1978	94		94					
1979	219	_	219					
1980	529		529					
1981	454	_	454					
1982	754	57	811					
Subtotal	3.085	57	3,142					
reat Lakes Total, bro	wn and tiger trout, 19	75-1982		16.38				

¹Brown × brook trout hybrid.

ANNUAL REPORT OF 1982

Table 12. (Cont'd.)

	Grid			
Location	No. Num	bers Age		Fin Clip
Gill's Rock	606	10,000	F	none
Gill's Rock	606	5,500	Y	none
Kenosha	2202	31.600	F	none
Kenosha	2202	30,000	Y	none
Kewaunee	1104	2,500	F	none
Kewaunee	1104	78,315	Y	none
Little River	703	18,000	Y	none
Manitowoc	1303	62,700	F	none
Manitowoc	1303	54,300	Y	none
Marinette Surf Club	703	10,000	F	none
Marinette Surf Club	703	12,000	F	none
Menominee River	703	10,000	Y	none
Milwaukee	1901	76,491	F	none
Milwaukee	1901	26,200	Y	none
Moonlight Bay	706	10,000	F	none
Moonlight Bay	706	5,500	Y	none
Oconto Park	802	10,000	F	none
Oconto Park	802	19,300	Ŷ	none
Oconto Pier	802	60,000	Ē	none
Oconto River	802	122,500	F	none
Peshtigo River	803	122,500	F	none
Port Washington	1701	44,789	F	none
Port Washington	1701	62,496	Ŷ	none
Racine	2102	31.200	F	none
Racine	2102	30,000	Ŷ	none
Red Arrow Park	703	30.000	Ŷ	none
Red Arrow Park	703	10,000	Ŷ	none
Rowleys Bay	607	10,000	F	none
Rowleys Bay	607	5,500	Ŷ	none
Shauer Park	805	25,800	Ê	none
Shauer Park	805	14,900	Y	none
	1502	115,753	F	none
Sheboygan	1502	76,224	Y	none
Sheboygan Sister Bay	606	6.000	Ý	none
5	905	86,660	F	none
Sturgeon Bay	905		Y	
Sturgeon Bay Two Rivers	1303	32,700 82,000	F	none
Two Rivers	1303	35,795	г Ү	none
Westers	805	30,000	F	none
Westers	805	10.500	г Y	none
Whitefish Bay	805 805		r F	none
2		30.000	г Ү	none
Whitefish Bay	805	11,000	r F	none
Winnegar Pond	803	10.000	г Ү	none
Winnegar Pond	803	15.000	I	none
Subtotal		1.820,693		
Total. Lake Michigan		1.903,813		
-8				

TROUT, SPLAKE, AND SALMON PLANTINGS 73

Table 12. (Cont'd.)

	Table 12. (C	Cont d.)			
_	Grid				
Location	No. Numb	ers Age		Fin Clip	
LA	KE HURON-BR	ROWN TRO	UT		
Michigan waters					
East Tawas	1309	25,000	FF	none	
Crindstone City	1412	25,000	FF	none	
Lakeside Road Access	304	15,000	FF FF	none	
Lexington	1915	25,000 25,000	FF	none	
Port Sanilac	1814 607	20,000	FF	none	
Rogers City Saginaw Bay, Pt. Lookout	1408	15,000	FF	none	
Thunder Bay, Part Pt.	809	85,000	FF	none	
Whitney Drain	1408	15,000	FF	none	
Subtotal		250,000			
Total, Lake Huron		250,000			
Total, Eake Haron		,			
	E ST. CLAIR-				
Michigan Waters	E SI. CLAIR-	DROWN 11	(001		
Black River	0000	22,500	Y	none	
St. Clair River	0000	25.000	FF	none	
Subtotal		47.500			
Total, Lake St. Clair		47,500			
Total, Eake St. Clair					
		OWN TROI	(T		
New York waters	AKE ERIE-BR	UWN IKU	1		
	424	21,500	Y	none	
Barcelona	424 326	50,000	F	none	
Center Road and Route 5 Dunkirk Harbor	425	10,000	Y	none	
Silver Creek	326	21.500	Ŷ	none	
Sturgeon Point	227	35.000	FF	none	
Subtotal	/	138,000			
Subtotal		100,000			
Ohio waters					
Grand River	814	38.650	F	none	
Penneylyania watan					
Pennsylvania waters					
Conneaut Creek,	718	1,162	Y	none	
Albion Reservoir Conneaut Creek,	/18	1,102	I	none	
Temple Creek	718	125	Y	none	
Conneaut Creek,	, 10		-		
Temple Creek	718	380	2 yrs	none	
Coneaut Creek	718	1,156	Y	none	
Crooked Creek	619	1,650	2&4 yr		
Elk Creek	619	6,200	2&4 yr		
Elk Creek	619	400	2 yrs	none	
Lake Erie	620	25,000	Y	none	

Table 12. (Cont'd.)

Location	Grid No.	Numbers	Age	Fin Clip		
Raccoon Creek,						
Baldwin Pond Raccoon Creek,	619	60	2 yrs	none		
Baldwin Pond	619	440	Y	none		
Twenty Mile Creek	523	3,650	F,Y	none		
Walnut Creek	620	400	2 yrs	none		
Subtotal	020	40,623	_ ,			
Total, Lake Erie		217.273				
	E ONTARIO	-BROWN TR	OUT			
New York waters						
Braddock's Bay	815	23,500	Y	none		
Fair Haven	720	32,870	Y	none		
Genesee	815	31.110	Y	none		
Hamlin	713	35,600	Y	none		
Henderson Bay	424	25.000	Y	adipose		
Henderson Bay	424	4.970	Y	Floy tag		
Irondequoit	815	23,500	Y	none		
Olcott	708	37,600	Y	none		
Olcott	708	25,000	FF	none		
Oswego	721	24,090	Y	Floy tag		
Oswego	721	4,690	Y	adipose-left ventr		
Oswego	721	6,900	Y	none		
Oswego	721	50,000	SF	none		
Oswego	721	52,800	FF	none		
Point Breeze	711	37,710	Y	none		
Point Breeze	711	10,000	FF	none		
Pultneyville	817	23,610	Y	none		
Ray Bay	523	10,680	Y	none		
Ray Bay	523	25,000	Y	left ventral		
Rochester	815	20,000	FF	none		
Selkirk	623	40,870	Y	none		
Sodus	819	36,900	Y	none		
Sodus	819	20,000	FF	none		
Southwicks Beach	523	15,000	Y	none		
Webster	816	23,500	Y	none		
Webster	816	48,000	SF	none		
Wilson	707	40,060	Y	none		
Wilson	707	25,000	FF	none		
Subtotal		753,960				
Ontario waters						
Ganaraska River	411	17,000	FF	none		
Ganaraska River	311	2,000	FF	none		
Lake Ontario	319	19,150	FF	right ventral		
Rouge River	506	19.000	FF	none		
Subtotal		57,150				
Total, Lake Ontario		811,110				
Great Lakes Total		3,312,816				

75 TROUT, SPLAKE, AND SALMON PLANTINGS

Table 13. Annual plantings (in thousands) of brook trout in the Great Lakes, 1976-182.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	LAKE SUPERIOR		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Year	Wisconsin	Minnesota	Ontario	Tota
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1976	25	7	-	32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A CONTRACT OF A		66		188
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	111
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and the second sec			-	1.39
1982 43 - 11 53 Subtotal 644 145 11 53 Year Michigan LAKE MICHIGAN 11 53 Year Michigan Wisconsin Illinois Take 1976 61 12 6 67 1977 - 643 - 54 1978 - 243 5 54 1978 - 243 5 54 1978 - 243 5 54 1978 - 187 8 95 1980 6 6 6 6 1981 8 200 - 20 1982 - 283 - 25 Subtotal 69 1.753 39 1.86 1977 2 2 2 2 1.97 1976 6 6 6 6 1.97 1978 2 2 2 2 1.98 1980 326				-	80
Subiotal OHA Test Tr Year LAKE MICHIGAN Wisconsin Illinois Total 1976 61 12 6 7 1977 - 643 - 643 1978 - 243 5 24 1979 - 185 20 20 1980 - 185 20 20 1982 - 283 - 28 1981 8 200 - 20 1982 - 283 - 28 Subtotal 69 1.753 39 1.86 Subtotal 69 1.753 39 1.86 1976 6 6 2 2 1977 2 2 2 197 1978 2 2 2 1978 1979 - - - 1980 6 1980 6 6 -			-	11	\$3
Year Michigan Wisconsin Illinois Table 1976 61 12 6 7 1977 - 643 - 64 1978 - 243 5 24 1979 - 187 8 199 1980 - 185 20 20 1981 8 200 - 26 1982 - 283 - 26 Subtotal 69 1.753 39 1.86 Subtotal 69 1.753 39 1.86 1980 - 2 2 2 1977 2 2 2 2 1978 2 2 2 2 1978 2 2 2 2 1980 6 6 6 6 1981 - - - - 1982 4 4 - - 1976 - - - - 1980	Subtotal	644	145	11	799
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			LAKE MICHIGAN		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Year	Michigan	Wisconsin	(Ilinois	Tota
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1976	61	12	6	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1977	-	643		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1978	-		5	
1981 8 200 - 200 1982 - 283 - 283 Subtotal 69 1.753 39 1.86 LAKE ERIE Year Pennsylvania Total 1976 6 6 6 1977 2 2 2 1978 2 2 2 1979 - - - 1980 6 6 6 1981 - - - 1982 4 4 - Subtotal 20 20 LAKE ONTARIO 1982 4 4 Subtotal 20 20 LAKE ONTARIO 1977 8 8 1978 1979 - - - 1977 8 8 8 1978 - - - 1980 326 326 326 1981 106		-	187		19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1980	-	185	20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8			20
$\begin{tabular}{ c c c c c c } \hline LAKE ERIE \\ \hline Year & Pennsylvania & Total \\ \hline 1976 & 6 & 6 \\ 1977 & 2 & 2 \\ 1978 & 2 & 2 \\ 1978 & 2 & 2 \\ 1979 & - & - \\ 1980 & 6 & 6 \\ 1981 & - & - \\ 1982 & 4 & 4 \\ \hline Subtotal & 20 & 20 \\ \hline \hline \\ \hline $		-		-	28
$\begin{tabular}{ c c c c c c c c c c c } \hline Year & Pennsylvania & Total \\ \hline 1976 & 6 & 6 \\ 1977 & 2 & 2 \\ 1978 & 2 & 2 \\ 1978 & 2 & 2 \\ 1979 & - & - \\ 1980 & 6 & 6 \\ 1981 & - & - \\ 1982 & 4 & 4 \\ \hline \hline Subtotal & 20 & 20 \\ \hline \hline \hline \\ \hline Subtotal & 20 & 20 \\ \hline \hline \\ \hline \hline \\ \hline Year & New York & Total \\ \hline \hline \\ 1976 & - & - \\ 1977 & 8 & 8 \\ 1978 & - & - \\ 1979 & - & - \\ 1979 & - & - \\ 1980 & 326 & 326 \\ 1981 & 106 & 106 \\ 1982 & - & - \\ \hline \end{array}$	Subtotal	69	1,753	39	1.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	and the second s		LAKE ERIE		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	Year	Pennsylvania	Total	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1976	6		
1979 - - 1980 6 6 1981 - - 1982 4 4 Subtotal 20 LAKE ONTARIO Year New York Total 1976 - - 1976 - - 1977 8 8 1978 - - 1979 - - 1980 326 326 1981 106 106 1982 - -		1977	2	2	
1979 - - 1980 6 6 1981 - - 1982 4 4 Subtotal 20 LAKE ONTARIO Year New York Total 1976 - - 1976 - - 1977 8 8 1978 - - 1979 - - 1980 326 326 1981 106 106 1982 - -		1978	2	2	
1980 6 6 1981 - - 1982 4 4 Subtotal 20 20 LAKE ONTARIO Year Year New York Total 1976 - - 1977 8 8 1978 - - 1979 - - 1979 - - 1980 326 326 1981 106 106 1982 - -			-		
1981 -			6	6	
1982 4 4 Subtotal 20 20 LAKE ONTARIO Total Year New York Total 1976 - - 1977 8 8 1978 - - 1979 - - 1980 326 326 1981 106 106 1982 - -			_	_	
LAKE ONTARIO Year New York Total 1976 - - 1977 8 8 1978 - - 1979 - - 1980 326 326 1981 106 106 1982 - -			4	4	-
Year New York Total 1976 - - 1977 8 8 1978 - - 1979 - - 1980 326 326 1981 106 106 1982 - -		Subtotal	20	20	
1976 - - 1977 8 8 1978 - - 1979 - - 1980 326 326 1981 106 106 1982 - -			LAKE ONTARIO		
1977 8 8 1978 - - 1979 - - 1980 326 326 1981 106 106 1982 - -		Year	New York	Total	
1978 - - 1979 - - 1980 326 326 1981 106 106 1982 - -	and the second s		-	-	
1979 - 1980 326 1981 106 1982 -		1977	8	8	
1980 326 326 1981 106 106 1982 - -		1978		-	
1981 106 106 1982		1979	-	-	
1981 106 106 1982		1980	326	326	
1982 -					
Subtotal 440 440					
		Subtotal	440	440	

¹Brown \times brook trout hybrid.

Pennsylvania watar

ANNUAL REPORT OF 1982

Table 14. Plantings of brook trout in the Great Lakes, 1982.

Location	Grid No.	Numbers	Age	Fin Clip/Mark
Ontario waters	LAKE SUPE	RIOR-BROOK T	ROUT	
Dublin Creek Dublin Creek Gumey Quarry Island Subtotal	126 126 126 128	262 994 1,122 8,372 10,750	5 yrs 4 yrs 4 yrs Y	none none none right ventral
Wisconsin waters Ashland Bayfield Houghton Point Onion River Onion River Washburn Washburn Subtotal Total, Lake Super	1509 1409 1409 1409 1409 1409 1509 1509	7.500 3,750 100 2.800 1.020 3.750 8,670 15,000 42,590 53,340	Y A Y Y Y Y	none none adipose adipose none adipose none
Wisconsin waters	LAKE MICHI	GAN-BROOK T	ROUT	

706	12 000	4	
	,		none
		-	none
		-	none
			none
		-	none
005		Г	none
	283,000		
	706 1104 802 803 1701 1204 1502 1502 805	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

LAKE ERIE-BROOK TROUT

rennsyrraina waters				
Elk Creek Elk Creek Walnut Creek Walnut Creek	619 619 620 620	300 3,000 500 100	2 yrs 2,4 yrs Y 2 yrs	none none none none
Subtotal		3,900	2 9.5	none
Total, Lake Erie		3,900		
Great Lakes Total		325,240		

SEA LAMPREY CONTROL IN THE GREAT LAKES

W. E. Daugherty and H. H. Moore U.S. Fish and Wildlife Service Marquette, Michigan 49855

J. J. Tibbles, S. M. Dustin, and B. G. H. Johnson Department of Fisheries and Oceans Sault Ste. Marie, Ontario P6A 1P0

This report summarizes the activities in 1982 of the Canadian and United States sea lamprey management units of the Great Lakes Fishery Commission, in fulfillment of the responsibility, assigned under the Convention for Great Lakes Fisheries, "to implement a program aimed at eradicating or minimizing sea lamprey populations in the Convention Area." A program of sea lamprey management is in effect in all of the Great Lakes except Lake Erie. Although a variety of possible alternate control methods are under active investigation, the current success of sea lamprey management still relies almost exclusively on the repetitive application of selective toxicants (lampricides) to streams and other water bodies containing populations of larval sea lampreys.

The detection and evaluation of larval populations are accomplished through surveys of streams and other areas, using electroshockers or application of granular Bayer 73 (2',5-dichloro-4'-nitrosalicylanilide), a bottom formulation of one of the lampricides. Treatments of streams are performed by the regulated introductions of a liquid formulation of TFM (3-trifluoromethyl-4-nitrophenol), either with or without the addition of Bayer 73 as wettable powder, at concentrations and durations predetermined to kill sea lamprey larvae without significantly affecting fish populations. Adult sea lamprey populations are monitored in the parasitic phase by solicitation of specimens and incidental catch data from commercial fishermen, or in the spawning phase by collecting the upstream migrants in various trapping devices. Other investigations are aimed at

282 249

270 248

498 482

497 493

50

954 799

954 2,989

- ~

Ontario

Superior Michigar

Huron

Lake

learning more about the life history and behavior of the sea lamprey in a continuing effort to make sea lamprey control more efficient and effective.

During 1982, no new populations of sea lamprey larvae were found during stream surveys. However, extensions of known distributions were found in a large river system (three tributaries of the Saginaw River, Lake Huron). A total of 81 lampricide treatments were performed by the control units, as detailed in Table 1. Monitoring of spawning-phase sea lampreys through the operation of various types of trapping devices resulted in the capture of 39,970 specimens. Details of the biological information derived from these animals are listed in Table 2.

The sections which follow describe sea lamprey management activities and biological investigations in each lake basin for 1982.

LAKE SUPERIOR

SURVEYS

Ammocete surveys were conducted on 178 streams and 26 estuaries, bays, or inland lakes during 1982. Pretreatment surveys were conducted on 35 streams during the field season and 12 of the streams were treated. The other streams are scheduled for treatment in 1983 or later. Moderate to large populations were indicated in the Two Hearted and Salmon Trout (Marquette County) rivers and Polly Creek.

Index stations on tributaries to the south shore of Lake Superior have been examined each fall since 1960 to determine presence of young-of-theyear sea lampreys. The 1982 year class of sea lampreys was in 28 of 74 streams examined. Chemical treatments later eliminated this year class from nine streams: Waiska, Betsy, Sucker, Big Garlic, Ravine, Silver, Sturgeon, and Nemadji rivers and Furnace Creek. Thirty-three streams

Table	۱.	Summary	of	chemical	treatme	nts in	stre	ams	and	estuarine	or	bay	areas
				of th	e Great	Lakes	s in	1982	!				

							Ba	iyer 73	
			arge at outh	T	FM	Pov	vder	Gra	nules
Lake	Number of treatments	m ³ /s	f ³ /s	Act. kg	Ingr. Ibs	Act. kg	Ingr. Ibs	Total kg	used ^a Ibs
Superior	31	107.4	3,795	9,752	21.470	52	116	3,906	8,605
Michigan	13	157.6	5,568	31,135	68.640	94	208	-	_
Huron	23	26.2	922	6,497	14.318	8	17	2,228	4,900
Ontario	4	11.7	421	3,400	7,482	4	8	4	30
TOTAL	81	302.9	10,706	50,784	111,910	158	349	6,148	13,535

^a Sand granules coated with Bayer 73 at 5% by weight active ingredient.

	Mean weight (g)	Males Females	169 160	222 232	211 220
reys captured in 1 1982.	Mean length (mm)	Males Females	422 410	485 483	468 470
table 2. Number and biological characteristics of adult sea lampreys captured in assessment traps in 43 tributaries of the Great Lakes in 1982.		males	33	38	4
logical characteristi s in 43 tributaries o	Alimitan	sampled	1.276	4,999	4,435
2. Number and bio assessment trap	- - -	l otal captured	1,325	13,505	21.197
I able	3	streams	6	13	7
			5	Ч	

	Number of	Total	Number	Dancont	Mean le	ngth (mm)	Mean v	weight (g)
Lake	Number of streams	Total captured	sampled	Percent males	Males	Females	Males	Females
Superior	9	1,325	1,276	33	422	410	169	160
Michigan	13	13,505	4,999	38	485	483	222	232
Huron	7	21,197	4,435	41	468	470	211	220
Erie	[954	954	50	497	498	270	282
Ontario	13	2,989	2,799	56	493	482	248	249

Table 2. Number and biological characteristics of adult sea lampreys captured in
assessment traps in 43 tributaries of the Great Lakes in 1982.

contain reestablished populations; however, 4 of these have shown no evidence of recruitment for the past 4 years or more. The largest reinfestations appeared to be in the Brule, Bad, and Middle rivers and Harlow Creek.

Sea lamprey ammocetes were collected from 9 of 15 streams surveyed along the north shore of Lake Superior to determine if sea lampreys had reestablished since the last lampricide treatment. The six streams from which sea lampreys have not reestablished since their last treatment are as follows (year of last treatment in parentheses): East Davignon Creek (1972), Sawmill Creek (1968), Little Pic River (1981). Blende Creek (1964), McIntyre River (1960), and the Cloud River (1976). Seven of the other nine streams known to harbor sea lamprey larvae were last treated in 1980 or 1981, whereas the Harmony and Pays Plat rivers were treated in 1976 and 1963, respectively. Each of the two rivers were surveyed on several occasions since the last treatments, but no larvae were collected until 1982.

Residual sea lampreys were found in 16 streams along the south shore of Lake Superior. Moderate to large populations were found in the Waiska and Traverse rivers during spring surveys. These rivers were treated later in the year. Small numbers of residual lampreys were revealed in 14 other streams: Two Hearted, Sucker, Au Train (Buck Bay Creek), Little Garlic, Huron, Slate, Ontonagon, Bad, Brule, Poplar, Middle, Amnicon, and Nemadji rivers and Washington Creek. Treatments later in the year probably eliminated these animals in the Sucker, Slate, Ontonagon, and Nemadji rivers.

Treatment evaluation surveys were conducted on seven north shore tributaries treated in 1981 and Batchawana River treated in the fall of 1980. Residual sea lampreys were collected from five of the streams—the Batchawana and Jackfish rivers appear to harbor a greater number than the Pancake, Little Pic, or Nipigon rivers.

Investigations continued on the St. Louis River to determine the magnitude of the recently established (1979) population. Sampling in 1982, as in past years, indicated a low density population extending downstream from the barrier dam at Fond du Lac for about 9 km (5.6 miles) to just below the Oliver Bridge. Twelve ammocetes (43–126 mm long) were recovered in surveys with granular Bayer 73.

Surveys with Bayer 73 and backpack shockers of offshore, estuarine, and inland lake areas associated with tributaries of Lake Superior continued. Sea lamprey larvae were recovered from 10 of the 20 areas examined: Sucker, Miners, Laughing Whitefish, Ravine, Slate, Silver, and Black rivers, Galloway Creek, and Beaver and Harlow lakes.

Granular Bayer 73 surveys were conducted at six sites in Batchawana Bay to further establish sea lamprey distributional patterns and document larval densities upon which to base granular Bayer treatments.

No sea lamprey infestations were found during resurveys of historically negative streams. Included in the streams surveyed were 12 tributaries located on the Slate Islands. Only two the Slate Island tributaries are thought to contain habitat suitable for sea lamprey spawning and larval survival.

TREATMENTS

Chemical treatments were completed on 27 streams and 4 bay areas of Lake Superior during the field season (Table 3, Fig. 1). Most of the treatments were routine with sufficient water volume to maintain lethal chemical concentrations through the estuaries. A controlled flow of 40 m³/s (1,412 f^3/s) on the main Michipicoten River resulted in a highly successful treatment of this large and prolific lamprey-producing river. The Sable River treatment was complicated by low water discharge which resulted in additional time and chemical applications.

Annual treatments with TFM in the United States and granular Bayer 73 in Canada to prevent establishment of sea lampreys in lentic areas continued. Annual treatments with TFM were performed on the Sucker, Big Garlic, Silver, Slate, and Ravine rivers and Furnace and Harlow creeks. Granular Bayer 73 treatments within Mackenzie, Cypress, Mountain, and Batchawana bays produced relatively low numbers of larval sea lampreys in comparison to previous annual treatments. An exception was that area of Batchawana Bay adjacent to Chippewa River where 780 larvae, including 8 metamorphosing ammocetes, were collected. The Chippewa River will be treated annually commencing in 1983 to reduce larval recruitment to a lake population.

Sea lampreys were numerous in the Misery River and Newholm Creek, an Ontonagon River tributary. About 10% of the sea lamprey larvae collected on the Goulais River were residuals left from the 1979 treatment. Transforming lampreys were collected from the Sable River and three areas of Batchawana Bay.

Mortalities of nontarget species were limited to trout-perch in the mouth area of the Gravel and Goulais rivers and numerous minnows on a section of the Waiska River.

SPAWNING-RUN SEA LAMPREYS

Assessment traps were fished in nine tributaries of Lake Superior in 1982 (Table 4, Fig. 1). The catch of adult sea lampreys was 1,325, compared with 1,846 in 1981. The largest decline occurred in the Tahquamenon River where the catch decreased by 365. Although only two rivers were fished in Canada compared with six in 1981, the total catch increased from 82 to 104. The average length and weight of sea lampreys have remained fairly constant, but the percentage of males decreased from 36 in 1981 to 33 in 1982 (Table 4).

PARASITIC SEA LAMPREYS

A total of 247 sea lampreys (228 in U.S. and 19 in Canada) were taken by commercial and sport fishermen from Lake Superior, compared with 239 (212 in U.S. and 27 in Canada) in 1981. Included in the collection were

							Ba	yer 73					
		Discharge at mouth		TFM		Pov	vder	Grai	nules	Stream treated			.rea ated
Stream				Act.	Ingr.	Act.	Ingr.	Total	used ^a				
or bay	Date	m ³ /s	f ³ /s	kg	lbs	kg	lbs	kg	lbs	km	miles	ha	acres
CANADA													
Goulais R. (10)	June 14	12.0	425	1,747	3,844		_	5	10	133.6	84	_	_
Little Gravel R. (4)	July 14	0.4	14	37	82	-	-	-	-	6.5	4	_	-
Pearl R. (2)	July 15	1.5	55	188	414	_	_	-	_	3.2	2	_	_
Cypress R. (3)	July 17	2.8	100	138	304	_	-	_	_	4.8	3	-	-
Gravel R. (5)	July 19	9.2	325	602	1,325	9	20	-	-	16.1	10		_
Sable R. (8)	Aug. 9	0.5	17	70	154	_			_	11.3	7	-	-
Michipicoten R. (7)	Aug. 21	51.8	1,830	2,806	6,173	43	96	-	_	18.5	11	_	_
Mountain Bay (6)	July 17	-	-	-	_	_	-	363	800	-	-	1.5	4
Cypress Bay (3)	July 18	-	_	-	-	_	-	454	1,000	-		1.9	5
Mackenzie Bay (1) Batchawana Bay (9)	July 20	-	-	-	-	-	-	907	1,995	-	-	3.7	9
Harmony R.	July 29	~	_	-		_		272	600	_	-	1.1	3
Stokely Cr.	Aug. 4	_	-	_	_	_	_	454	1,000	_	-	1.9	5
Chippewa R.	Aug. 5	_	_		-	-		544	1,200	_	_	2.3	6
Sable R.	Aug. 17		-	-	_	-	~	363	800	-	-	1.5	4
Batchawana R.	Aug. 30	_	_	-	_	_		363	800	-	-	1.5	4
Sand Point	Aug. 30	-	-	_	-	_	~	181	400	_	-	0.7	2
Total		78.2	2.766	5,588	12,296	52	116	3,906	8,605	194.0	121	16.1	42

Table 3. Details on the application of lampricides to streams and bays of Lake Superior, 1982.
[Number in parentheses corresponds to location of stream or area in Figure 1.]

UNITED STATES														
Cranberry R. (28)	June 17	0.1	3	100	220	120	_	1.4	1 1 1	14.5	9			
Misery R. (25)	June 19	0.6	20	210	462	_	-			21.0	13		-	
East Sleeping R. (26)	June 22	0.2	8	70	154	_	-	_	_	3.2	2	-	-	
Miners R. (15)	June 29	0.5	19	220	484	_	_	_	_	3.2	2	_	_	
Little Garlic R. (18)	June 30	0.1	3	4()	88	_	-	_	_	4.8	2	-	_	
Traverse R. (24)	July 23	0.3	9	30	66	_	_	_	_	24.2	15	-	_	
Ontonagon R. (27)										24.2	15	-	_	
Newholm Cr.	July 26	0.1	2	20	44		_	_	_	1.6	1			
Ravine R. (20)	Aug. 19	0.1	3	20	44	_	-		_	8.1	5	-	-	
Silver R. (22)	Aug. 19	0.7	23	90	198	_	-	-	_	4.8	3	-	_	
Slate R. (21)	Aug. 20	0.1	5	10	22	_	-	_	_	1.6	5	-	-	
Sturgeon R. (23)	Aug. 23	17.0	600	2,165	4,774	_	-	_	_	161.3	100		-	
Nemadji R. (30)	-			_,	.,					101.5	100	-	_	
Black R.	Sept. 2	0.4	14	90	198	_	_	-	_	6.5	4			
Sand R. (29)	Sept. 6	0.2	8	70	154	_	~	_	_	8.1	5	-	_	
Sucker R. (14)	Sept. 17	3.1	110	509	1,122	_	~	_	_	24.2	15	_	_	
Betsy R. (13)	Sept. 17	£.7	60	180	396	_	_	_	_	14.5	9	_		
Pendills Cr. (12)	Sept. 20	0.8	30	50	110	_	-	_	-	1.6	í	_	_	
Big Garlie R. (19)	Sept. 28	0.8	30	70	154	_	-	_	_	3.2	2	_	-	
Harlow Cr. (17)	Oct. 26	0.2	7	20	44	_		_	_	1.6	-	-	_	
Waiska R. (11)	Oct. 27	1.7	59	160	352		-	_	_	12.9	8	_		
Furnace Cr. (16)	Oct. 27	0.5	16	40	88	_	_	_	_	1.6	1	-	_	
Total		29.2	1,029	4,164	9,174	_	-	_	_	322.5	200	-	-	
GRAND TOTAL		107.4	3,795	9,752	21,470	52	116	3,906	8,605	516.5	321	- 6.	42	

^a Sand granules coated with Bayer 73 at 5% by weight active ingredient.

ANNUAL REPORT OF 1982

ANNUAL REPORT OF 1982

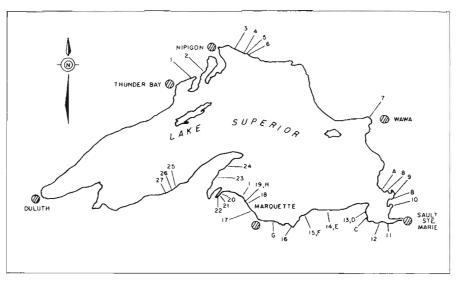


Figure 1. Location of streams and bay areas of Lake Superior treated with lampricides (numerals; see Table 3 for names of streams or areas), and of streams where assessment traps were fished (letters; see Table 4 for names of streams) in 1982.

eight recently metamorphosed sea lampreys ($\leq 200 \text{ mm long}$), of which six were collected in the Grand Marais, Michigan, area (statistical district, MS-5). Fishermen from the Apostle Islands area (statistical district of Wisconsin) and the Munising, Michigan, area (MS-4) contributed 115 and 81 lampreys, respectively. Although the total catch of sea lampreys in Lake Superior was nearly the same in 1981 as in 1982, the catch from the Apostle Islands and Munising areas increased from 92 to 115 and 74 to 81, respectively. The limited number of lampreys (19) submitted from Canadian waters in eastern Lake Superior (OS-7) do not permit an estimate of trends in any biological characteristics.

SPECIAL STUDIES

Big Garlic River trap—Twenty-eight transformed sea lampreys and 3,272 ammocetes were captured at the downstream trap in the Big Garlic River in 1982, compared with 28 and 1,030, respectively, in 1981. Large larvae (>120 mm long) collected in the spring are allowed to transform in warmwater aquaria, and then transferred to the Hammond Bay Biological Station. Small larvae (<120 mm) are held in aquaria for use in bioassays conducted by personnel of the Marquette chemical control units.

Rate of transformation—Sea lamprey ammocetes of age IV were collected by electrofishing from three streams in May: 30 from Point Patterson Creek (Lake Michigan), 118 from the Betsy River (Lake Superior), and 50

SEA LAMPREY CONTROL IN THE GREAT LAKES 85

			ć	Mean le	Mean length (mm)	Mean v	Mean weight (g)
Stream	captured	sampled	rercent males	Males	Females	Males	Females
CANADA							
Pancake R. (A)	06	52	40	430	410	170	159
Stokely Cr. (B)	14	\$	60	440	420	218	151
Total or average	104	57	42	430	410	176	158
UNITED STATES							
Tahquamenon R. (C)	229	227	54	430	428	184	185
Betsy R. (D)	232	232	40	422	410	176	163
Sucker R. (E)	58	58	21	404	420	140	159
Miners R. (F)	_		100	423	j	174	I
Rock R. (G)	530	530	23	418	412	154	152
Big Garlic R. (H)	170	170	27	413	414	()91	164
Iron R. (I)	_	-	0	1	354	ſ	155
Total or average	1.221	1,219	32	422	414	169	160
GRAND TOTAL OR AVERAGE	1,325	1.276	33	422	410	169	160

	NT L	NT L.	D .	Mean le	ngth (mm)	Mean	weight (g)
Stream	Number captured	Number sampled	Percent males	Males	Females	Males	Females
CANADA							
Pancake R. (A)	90	52	40	430	410	170	159
Stokely Cr. (B)	14	5	60	440	420	218	151
Total or average	104	57	42	430	410	176	158
UNITED STATES							
Tahquamenon R. (C)	229	227	54	430	428	184	185
Betsy R. (D)	232	232	40	422	410	176	163
Sucker R. (E)	58	58	21	404	420	140	159
Miners R. (F)	I	1	100	423	-	174	_
Rock R. (G)	530	530	23	418	412	154	152
Big Garlic R. (H)	170	170	27	413	414	160	164
Iron R. (I)	l	1	0	—	354	-	155
Total or average	1,221	1,219	32	422	414	169	160
GRAND TOTAL OR AVERAGE	1,325	1,276	33	422	410	169	160

Table 4. Number and biological characteristics of adult sea lampreys captured in assessment traps in tributaries of Lake Superior, 1982.[Letter in parentheses corresponds to location of stream in Figure 1.]

SEA LAMPREY CONTROL IN THE GREAT LAKES 87

from the Little Garlic River (Lake Superior). Another 50 (age unknown) were collected from the inclined-plane trap in the Big Garlic River (Lake Superior). Mean lengths from these streams were 123 mm (range, 116–134) for Point Patterson Creek, 131 mm (118–157) for Betsy River, 126 mm (120–145) for Little Garlic River, and 136 mm (120–157) for Big Garlic River.

The ammocetes were held under a variety of conditions to obtain transformation rates. Three groups were held in aquaria at room temperature at the Marquette Station: 15 from Point Patterson Creek, 43 from the Betsy River, and 25 from the Little Garlic River. Another group of 25 ammocetes from the Betsy River was held in a cage in that river. Six cages were placed in the St. Marys River, and ammocetes introduced as follows:

Cage No.	Source	No. of ammocetes
1	Point Patterson Creek	15
2	Betsy River	25
3	Betsy River	25
4	Little Garlic River	25
5	Big Garlic River	25
6	Big Garlic River	25

All sea lampreys were removed from the holding facilities in September and October. Mortality was low except for the caged ammocetes in the Betsy River where 14 of 25 were lost to unknown factors. The only transformation that occurred was 3 of 43 (7%) ammocetes in the Betsy River aquaria. A similar percentage (8%) of transformed sea lampreys were recovered also during the treatment of the Betsy River in September. A total of 8 of 105 sea lampreys greater than 120 mm collected during the treatment had transformed.

No information on natural stream transformation was available on Point Patterson Creek or the Little Garlic River. Chemical treatment was deferred on Point Patterson Creek, and the Little Garlic River was treated in June and, therefore, too early to observe transformation.

LAKE MICHIGAN

SURVEYS

Pretreatment surveys were conducted on 24 Lake Michigan tributaries during the field season. Eleven of the streams were later treated and 13 are proposed for treatment in 1983. Moderate to large populations are indicated in the Whitefish, Ford, Pere Marquette, and White rivers which will be treated in 1983.

Investigations to monitor reestablished sea lamprey populations showed that 43 streams are reinfested. No large populations of reestablished larvae were indicated in any stream except those scheduled for treatment in 1983. Sea lampreys of the 1982 year class were found in 24 streams. Residual sea lampreys were collected from 16 streams during surveys to evaluate recent chemical treatments and monitor reestablished populations. The residual populations appeared to be small.

No sea lampreys were found in surveys of 28 negative streams or in the reexamination of one small untreated stream (Fischer Creek) where a single sea lamprey larva was taken in the past. Seiners Creek, another small untreated stream, yielded 67 sea lamprey larvae (42–114 mm long) and is recommended for treatment in 1984.

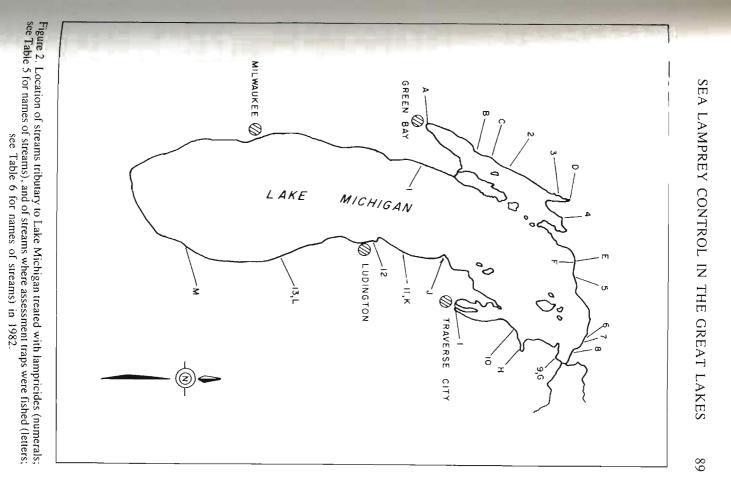
Surveys were conducted above dams on the Manistique, Grand, Betsie, and Paw Paw (St. Joseph) rivers to determine the effectiveness of barriers in these streams to block spawning-run lampreys. No sea lampreys were found. The dam on the Paw Paw River, at Watervliet, Michigan, was opened (stop boards pulled) and may have allowed sea lampreys to bypass upstream. This could open up an additional 187 km (117 miles) of stream for sea lamprey reproduction.

Lentic areas associated with 19 streams were examined for the presence of sea lampreys. Larvae were found in nine areas; the largest numbers were taken off the mouths of the Manistique (52 larvae, 52–165 mm long), Bear (30, 31–170 mm), and the Carp Lake (67, 35–154 mm) rivers. One of the larvae recovered off the Carp Lake River was 3.6 km (2.25 miles) north and east of the mouth. No lamprey larvae were found in an initial examination of the Sturgeon Bay Canal.

TREATMENTS

Chemical treatments were completed on 13 Lake Michigan streams (Table 5, Fig. 2). Adequate concentrations of TFM were maintained during the treatments, except in several small tributaries of the Brevort and Sturgeon rivers where attenuation of the chemical resulted from low flows in the headwater tributaries. Sea lamprey larvae were abundant during the treatments of the Lincoln, Platte, Muskegon, and Carp Lake rivers.

A major kill of suckers, minnows, and some game fish occurred during treatment of the East Twin River. A probable cause was depressed dissolved oxygen levels and the presence of ammonia which resulted from farmland runoff.


SPAWNING-RUN SEA LAMPREYS

A total of 13,505 sea lampreys were captured in assessment traps in six west shore and seven east shore tributaries of Lake Michigan (Table 6, Fig. 2). On the west shore, the catch in the Peshtigo River (475) increased from that in 1981 (294), whereas the catch in the Menominee River (62) was about the same as in 1981 (77). The combined catch in these two streams (537) remains well below the catch of 4,200 in 1978. The number of sea lampreys captured in the Manistique River (11,417) increased 39% from that in 1981 (8,226). No sea lampreys were captured for the fourth successive year in the Fox River, and only 15 were taken at the newly constructed barrier dam in the West Branch of the Whitefish River.

		Discharge at mouth		TFM		Bayer 73 powder		Stream treated	
C.	Duta		<u> </u>	Act.			Ingr.		
Stream	Date	m ³ /s	f ³ /s	kg	lbs	kg	lbs	km	miles
Brevort R. (8)	May 6	4.5	160	848	1,870	-	_	43.5	27
Black R. (6)	May 10	2.3	80	299	660	-	-	40.3	25
Carp Lake R. (9)	May 25	0.7	26	150	330	-	-	14.5	9
Sturgeon R. ⁴ (4)	June 4	2.8	100	1,138	2,508	-	-	201.6	125
Lincoln R. (12)	June 5	1.7	60	469	1,034		~	27.4	17
Platte R. (10)	June 18	11.3	400	2,106	4,642	10	22	22.6	14
Hog Island Cr. (7)	July 8	<0.1	1	30	66	-	-	4.8	3
Muskegon R. (13)	July 9	48.3	1,704	7,484	16,500		_	96.8	60
East Twin R. (1)	July 9	0.6	22	339	748	_	_	19.4	12
Manistee R. (11)	Aug. 6	77.2	2,725	15,009	33,088	84	186	132.3	82
Days R. (3)	Sept. 3	0.7	25	220	484	_		21.0	13
Cedar R. (2)	Sept. 28	5.4	190	2,215	4,884	_	_	161.3	100
Milakokia R. (5)	Oct. 16	2.1	75	828	1,826	-	-	25.8	6
Total		157.6	5,568	31,135	68,640	94	208	811.3	503

Table 5. Details on the application of lampricides to streams tributary to Lake Michigan, 1	982.
[Number in parentheses corresponds to location of stream in Figure 2.]	

^a Two tributaries, Section 13 and Nahma creeks, were treated with solid bar formulation (24.5 bars) of TFM.

	Number	Maria	0	Mean le	ngth (mm)	Mean	weight (g)
Stream	Number captured	Number sampled	Percent males	Males	Females	Males	Females
WEST SHORE							
Fox R. (A)	0	0	_	_	_	_	_
Peshtigo R. (B)	475	474	45	495	492	247	258
Menominee R. (C)	62	62	48	484	474	234	228
W. Br. Whitefish R. (D)	15	15	47	503	481	266	245
Manistique R. (E)	11,417	2,968	39	487	488	215	229
Weston Cr. (F)	4	4	50	518	429	246	173
EAST SHORE							
Carp Lake R. (G)	575	524	27	452	455	191	197
Jordan R.							
Deer Cr. (H)	129	127	33	493	497	251	278
Boardman R. (I)	172	172	31	489	472	241	229
Betsie R. (J)	255	253	38	475	471	234	241
Manistee R. (K)	12	11	46	496	484	261	254
Muskegon R. (L)	34	34	47	493	508	240	279
St. Josephs R. (M)	355	355	35	488	490	246	256
TOTAL OR AVERAGE	13,505	4,999	38	485	483	222	232

Table 6. Number and biological characteristics of adult sea lampreys captured in assessment traps in tributaries of Lake Michigan, 1982.[Letter in parentheses corresponds to location of stream in Figure 2.]

	Number	- codami M	Demonst	Mean le	Mean length (mm)	Mean	Mean weight (g)
Stream	captured	sumpled	males	Males	Females	Males	Females
WEST SHORE							
Fox R. (A)	0	0	ı	I	I	ļ	I
Peshtigo R. (B)	475	474	45	495	492	247	258
Menominee R. (C)	62	62	48	484	474	234	228
W. Br. Whitefish R. (D)	15	15	47	503	481	266	245
Manistique R. (E)	11,417	2,968	39	487	488	215	622
Weston Cr. (F)	4	4	50	518	429	246	173
AST SHORE							
Carp Lake R. (G) Jordan R.	575	524	27	452	455	161	197
Deer Cr. (H)	129	127	33	493	497	251	840
Boardman R. (I)	172	172	31	489	472	241	622
Betsie R. (J)	255	253	38	475	471	234	241
Manistee R. (K)	12	Ξ	97	496	484	261	254
Muskegon R. (L)	34	34	47	493	508	24()	279
St. Josephs R. (M)	355	355	35	488	490	246	256
TOTAL OR AVERAGE	13,505	4,999	38	485	483	222	232

ANNUAL REPORT OF 1982

SEA LAMPREY CONTROL IN THE GREAT LAKES 91

Catches of sea lampreys in seven streams along the east shore of Lake Michigan increased from the catches in 1981 (1,532 compared with 1,110). Most of the addition occurred in the Boardman and St. Joseph rivers, where catches increased by 110 and 218, respectively. Since the start of assessment trapping along the east shore in 1978, sea lampreys captured in the Carp Lake River have been significantly smaller than those from other sites in Lake Michigan and this trend continued in 1982. Sea lampreys from the Carp Lake River averaged 30 mm shorter and 32 g lighter than the average size of other Lake Michigan lampreys; however, their average length and weight are similar to sea lampreys captured in the Cheboygan and Ocqueoc rivers, nearby streams in Lake Huron.

PARASITIC SEA LAMPREYS

Lake Michigan fishermen captured 153 sea lampreys in 1982, compared with 285 in 1981. Fisheries from two Lake Michigan statistical districts, the Algoma, Wisconsin, area (WM-4) and the Naubinway-Epoufette, Michigan, area (MM-3), contributed most of the sea lampreys in 1982, 54 and 33, respectively. Sea lampreys from Algoma, Wisconsin, were predominantly spawning-phase adults collected from commercial pound nets set for rainbow smelt and alewife near the estuary of the Ahnapee River.

The number of sea lampreys collected from the fisheries of Lake Michigan indicated a decrease in the populations in northern Lake Michigan and Green Bay. Northern Lake Michigan (excluding Green Bay) produced 44 sea lampreys in 1982, compared with 80 in 1981. The number of sea lampreys taken in Green Bay shows a similar decrease from 81 in 1981 to 53 in 1982.

SPECIAL STUDIES

Weston Creek barrier dam—A low-head barrier dam was constructed on Weston Creek, a tributary of the Manistique River, in 1979. Before the installation of the barrier, sea lampreys used Weston Creek to bypass the dam on the main stream of the Manistique River.

To determine the vertical drop necessary to stop sea lampreys, observations have been made for four successive years. In 1982, the vertical drop at the Weston Creek barrier ranged from 37 to 46 cm (14 to 18 inches) and averaged 42 cm (16 inches). The water column over the dam was from 43 to 65 cm (17 to 26 inches) and averaged 54 cm (21 inches). From 1979 to 1981, the vertical drop ranged from 0 to 24 cm (9 inches) in 1980, from 6 to 23 cm (2 to 9 inches) in 1981, and 29 to 38 cm (11 to 15 inches) in 1979. The water column over the top of the dam ranged from 43 to 84 cm (17 to 33 inches) in the 3-year period.

An electrical barrier was installed upstream to evaluate the effectiveness of Weston Creek barrier dam. Larval surveys also assessed the effectiveness of the barrier. No evidence has been found to indicate lampreys surmounted the low-head barrier dam.

Persistence of TFM in backwaters—A study to determine the persistence of TFM in backwaters sprayed during chemical treatments was per-

SEA LAMPREY CONTROL IN THE GREAT LAKES 93

formed during treatment of the Sturgeon River, Delta County, Michigan. The backwater was sprayed with concentrations of TFM ranging from 3.5 to 13.7 mg/L on June 2. Samples were taken daily through June 10, and a final sample was taken on June 29. TFM concentrations ranged from 9% to 26% of original application levels by June 10. Trace amounts of TFM were found on June 29. Sampling was ceased after the backwater was flushed with rising water from the main Sturgeon River.

Treatment effects upon burrowing mayflies—Concerns of treatment effects upon burrowing mayflies prompted a study of Ephemeridae mortality during the Sturgeon River (Delta County, Michigan) treatment from June 4 to 8, 1982. Although previous field studies have evaluated treatment effects upon single species of burrowers, no study has yet compared the effects of TFM upon several species.

The Sturgeon River presents an opportunity for comparison of treatment effects upon three burrowing mayflies. Two species inhabit the upper river; *Hexagenia limbata* found in the soft silt along stream banks and *Ephemera simulans*, a common resident of sand substrates. A third species, *Litobrancha recurvata*, is present in several cold tributaries of the Sturgeon River.

Fifty large nymphs of each species were collected by electrofishing and placed in cages, $107 \times 76 \times 43$ cm $(3.5 \times 2.5 \times 1.5$ ft.). The mayflies were allowed to burrow into 20 cm (8 inches) of substrate. Three cages were placed at sites where nymphs would be exposed to different concentrations of chemical and a fourth was put upstream of the chemical application point to serve as a control.

The timing of the study coincided with the period of emergence for L. recurvata. A total of 95% of the nymphs emerged as adults from the cage held in the cold tributary, the normal habitat for this species. If eggs of L. recurvata are as resistant to TFM as those of Hexagenia, then effects of treatment were probably minimal. Unseasonably cold nights with temperatures below freezing during this period probably caused some mortality of adults.

A great difference was evident in the effect of TFM upon the two other burrowers. *E. simulans* numbers were not greatly reduced by TFM concentrations used in this treatment. Concentrations and percentage mortality were: control cage, 10%; 3 ppm TFM, 26%; 4.4 ppm, 8%; and 4.9 ppm, 10%. TFM induced mortality was much higher for *H. limbata;* concentrations and percentage mortality were: control cage, 2%, 3 ppm TFM, 74%; 4.4 ppm, 92%; and 4.9 ppm, 90%.

A bioassay as described by Fremling and Mauch $(1980)^1$ was conducted on *E. simulans* and *H. limbata*. Glass tube substrates provided burrows to prevent mayflies from swimming throughout the bioassay. A

mild shock from a 9-volt battery was used to determine the time of death. The bioassay confirmed that *E. simulans* was much more resistant to TFM than *H. limbata*. The 16-hour LC₅₀, corresponding to the time the chemical was metered into the stream, was 5.7 ppm TFM for *E. simulans* and 3.2 ppm TFM for *H. limbata*.

Peak emergence periods for the three species were also determined. L. recurvata emerged on June 5 and 6, E. simulans from June 24 to 30, and H. limbata on June 28 to 30.

We noticed during the bioassay that significant *H. limbata* mortality (> 40%) did not occur at treatment ranges of 3 to 5 ppm TFM until at least 10 hours after all larvae had died. Where practical, it would be advisable to reduce the time chemical is metered into the stream to decrease mortality of burrowing mayfly nymphs.

LAKE HURON

SURVEYS

Surveys for larval sea lampreys were conducted on 48 Canadian and 69 U.S. streams tributary to Lake Huron. No new sea lamprey populations were found during surveys of 15 Canadian and 12 U.S. streams with no previous history of their occurrence; however, 3 tributaries of the Saginaw River (Michigan)—Shiawassee, Cass, and Pine rivers—were found to contain sea lampreys for the first time.

Surveys of previously treated streams showed that reestablishment of sea lampreys had occurred in 24 streams in the United States and 6 in Canada. The population density of sea lampreys in streams recently treated in southern Georgian Bay remains low. The 1982 year class of sea lampreys was absent from the Ocqueoc River (Michigan), which can be attributed to the effectiveness of the low-head barrier dam installed at the old weir site.

Posttreatment surveys revealed residual sea lamprey larvae in four U.S. and four Canadian streams. Numbers of residual sea lampreys were small except in the Garden River.

Surveys of lentic areas and one inland lake on the U.S. side of Lake Huron revealed sea lampreys in 6 of the 17 areas examined. Lampreys undergoing transformation were observed off the Carp River and Nuns and Elliot creeks. Sea lampreys reported a year ago in Mission and Ermatinger creeks, tributaries of the St. Marys River, are presumed to have originated from the main river and washed into the creeks by water level changes.

The Chippewa River (Saginaw River system) was found to contain sea lamprey larvae apparently as a result of floods or of late closure of the fish ladder at the Dow Dam on the Tittabawassee River in 1981 and 1982. The dam at Mount Pleasant, Michigan, now marks the upstream limit of sea lamprey distribution.

Surveys to establish distributional limits of larval populations were conducted on 15 Canadian tributaries. The Canadian Unit also continued surveys of the St. Marys River to provide more information on sea lamprey distribution in this system.

¹Fremling, C. R., and W. L. Mauch. 1980. Methods for using nymphs of burrowing mayflies (Ephemeroptera, *Hexagenia*) as toxicity test organisms, p. 81–97. *In* A. L. Buikema, Jr., and John Cairns, Jr. (eds.) Aquatic invertebrate bioassays. American Society for Testing and Materials.

TREATMENTS

Lampricide treatments of 18 streams (10 in the United States and 8 in Canada) and granular Bayer 73 applications to five locations in Canada were conducted in 1982 (Table 7, Fig. 3). The stream treatments were judged effective. Granular Bayer 73 was applied to the estuary of Blind River, a North Channel tributary, during the TFM treatment in an effort to overcome the effects of thermal stratification which would have isolated the cold lake water from the treated river water.

Significant fish mortalities occurred in two treatments. In the Au Gres River, spawning white suckers were killed; in Black Mallard Creek, 31 spawning chinook salmon died.

Granular Bayer 73 applications to lentic areas have been effective in reducing larval populations. Treatment of Michael Bay, at the mouth of Manitou River, with granular Bayer 73 revealed a lower density of larvae than on previous occasions, indicating that repeated applications have a significant effect. Repeated applications of granular Bayer 73 have been made below Whitefish Island on the St. Marys River. A reduction in numbers of sea lampreys was noted in 1982 compared with the previous year; however, this area is subject to annual recruitment from extensive sea lamprey spawning in the St. Marys Rapids. Downstream drift of larvae from the rapids is doubtless the source of infestation of the area about 2 km (1.2 miles) downstream (Station H). Repeated granular Bayer 73 applications in this area have also been planned. The deltas of the Root and Garden rivers in St. Marys River also have been treated repeatedly with granular Bayer 73, with noticeable reductions in numbers of sea lamprey larvae obtained.

SPAWNING-RUN SEA LAMPREYS

During the 1982 spawning season, 20,282 sea lampreys were captured in assessment traps in U.S. tributaries of Lake Huron (Table 8, Fig. 3). nearly double that taken in 1981 (10,279). Of the total, 72% were from the Cheboygan River, but, because of an experiment conducted in the stream during the major portion of the spawning run, the catch is not comparable on a year-to-year basis. Consistent with biological data in previous years, sea lampreys captured in U.S. Lake Huron streams in 1982, except the St. Marys River, were significantly smaller than those in Lakes Michigan, Erie, and Ontario, but were larger than the lampreys in the Lake Superior population.

Portable traps were fished in two Canadian tributaries during 1982. A single trap was set below the dam on the Echo River, tributary to the St. Marys River system. High water prevented installation of this device until May 28. In a 28-night period ending June 25, 16 adults were taken by the trap. Of interest was the recovery of a sea lamprey from the Echo River which had been marked by the U.S. Fish and Wildlife Service during the previous fall in the vicinity of the Straits of Mackinac.

SEA LAMPREY CONTROL IN THE GREAT LAKES 95

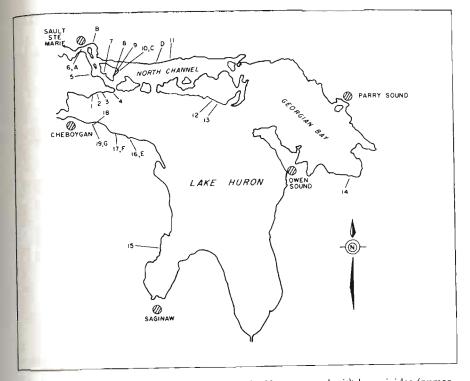


Figure 3. Location of streams and bay areas of Lake Huron treated with lampricides (numerals; see Table 7 for names of streams or areas), and of streams where adult sea lamprey collecting devices were fished (letters; see Table 8 for names of streams) in 1982.

Once again trapping was carried out on Bridgeland Creek, a major tributary of the Thessalon River. One of the two rectangular traps used was relocated downstream and provided with short leads screening part of the width of the stream. Whether or not trapping effectiveness was improved remains questionable, but servicing was aided. A total of 453 adult sea lampreys were collected in 1982, compared with previous collections of 461, 272, and 230 specimens from 1979 through 1981, respectively.

The dam on the Kaskawong River is the only tributary of Lake Huron where a permanent trap is incorporated into a sea lamprey barrier. To measure the effectiveness of this permanent trap, a mechanical weir was constructed about 1 km (0.6 mile) downstream of the dam. A total of 95 adult sea lampreys were captured in the downstream weir from May 4 to June 25, and of these, 84 were tagged and released; 19 lampreys were later recovered in this weir. The permanent trap in the barrier dam was operated for 67 nights (April 29–July 5) and captured 396 sea lampreys, of which 45 (54%) had been marked at the downstream weir. In all, 446 spawningphase sea lampreys were captured in the Kaskawong River in 1982.

							В	ayer 73					
		Discha	arge at outh	11	FM	Ρον	wder	Gra	nules		eam ited	-	area
Stream or bay area	Date	m ³ /s	f3/s	Act. kg	Ingr. Ibs	Act. kg	Ingr. Ibs	Total kg	used a Ibs	km	miles	ha	acres
CANADA		_											
Gordon Cr. (9)	May 26	<0.1	2	7	15	_	-	_	_	1.6	1	_	_
Two Tree Cr. (7)	May 31	0.1	3	33	73	_	_	-	_	4.7	3	_	
Watson Cr. (8)	June 2	0.1	3	16	35	_	_	_	_	1.6	Ĩ	-	_
Kaskawong R. (10)	June 7	0.2	7	210	462	_	-	-	_	9.7	6	_	_
Blue Jay Cr. (13)	June 9	0.5	18	128	282	-	_		_	9.7	6	_	_
Manitou R. (12)	June 10	1.1	40	248	546	_	_	_	-	4.7	3	_	_
Blind R. (11)	Aug. 12	5.2	184	213	468	_	_	136	300	1.6	1	_	_
Silver Cr. (14)	Sept. 23	0.2	7	103	227	_	_	-	_	3.2	2	_	_
Michael Bay													
Manitou R.(12)	June 11	-	-	-		~	-	136	300	-	-	0.7	2
												-	-
St. Marys R. (6)													
Station H	July 28	-	-		-		-	728	1,600	-	-	3.0	7
Root R.	Aug. 4	-	-	-		-	-	136	300	-	-	0.7	7 2
Whitefish Island	Aug. 5	-	-	-	-	_	-	728	1,600	-	-	2.2	5
Garden R.	Aug. 6	-	_	~	_	_		364	800	-	_	1.5	4
Total		7.5	264	958	2.108	_	-	2,228	4,900	36.8	23	8.1	20
JNITED STATES													
West Au Gres R. (15)	May 9	3.1	111	848	1.870	_		_	_	56.5	35	_	_
Trout R. (16)	May 21	0.5	19	299	660	-	-	_	_	6.5	4	_	_
Big Munuscong R. (5)	May 22	2.0	70	1,118	2,464	-	_	-	_	77.4	48	_	-
Caribou Cr. (4)	May 26	< 0.1	1	10	22	_	_	_	_	1.6	l	_	~
Cheboygan R.	2												
Pigeon R. (19)	Sept. 6	4.7	165	1.517	3,344	8	17	-	_	38.7	24	_	-
Ocqueoc R. (17)	Sept. 18	5.7	200	1,227	2,706	_	-	-	-	24.2	15	_	-
Black Mallard Cr. (18)	Oct. 1	1.0	37	190	418	-	-	-	-	9.7	6	-	-
Albany Cr. (3)	Oct. 15	0.3	12	80	176	-	_	_	-	9.7	6	_	_
	Oct. 17	0.6	20	120	264		-	-		1.6	1	_	-
McKay Cr. (2)													
McKay Cr. (2) Nuns Cr. (1)	Oct. 19	0.7	23	130	286	-	-	-		3.2	2	-	-
			23 658	130 5,539	286 12,210	8	- 17	-	-	3.2 229.1	2 142	_	-

Table 7. Details on the application of lampricides to streams and bay areas of Lake Huron, 1982. [Number in parentheses corresponds to location of stream or area in Figure 3.]

 $^{\rm a}\,Sand$ granules coated with Bayer 73 at 5% by weight active ingredient.

	- ·	-			-		
	Mumhan	Number	Deveent	Mean le	ngth (mm)	Mean	weight (g)
Stream	Number captured	Number sampled	Percent males	Males	Females	Males	Females
CANADA							
Echo R. (B)	16	16	69	480	460	239	225
Kaskawong R. (C)	446	425	36	460	470	212	227
Thessalon R. (D)	453	453	44	480	490	239	250
Total or average	915	894	41	470	480	227	238
UNITED STATES							
St. Marys R. (A)	3,848	1,253	49	485	484	232	237
Trout R. (E)	56	27	33	464	461	232	204
Ocqueoc R. (F)	1,794	452	36	445	456	177	204
Cheboygan R. (G)	14,584	1,809	37	456	462	191	207
Total or average	20,282	3,541	41	468	468	208	216
GRAND TOTAL OR AVERAGE	21,197	4,435	41	468	470	211	220

Table 8. Number and biological characteristics of adult sea lampreys captured in assessment devices fished in tributaries of Lake Huron, 1982.[Letter in parentheses corresponds to location of stream in Figure 3.]

	-			Mean lei	Mean length (mm)	Mean w	Mean weight (g)
Stream	Number captured	Number sampled	Percent males	Males	Females	Males	Females
CANADA							
Echo R. (B)	16	16	69	480	460	239	225
Kaskawong R. (C)	446	425	36	460	470	212	227
Thessalon R. (D)	453	453	44	480	490	239	250
Total or average	915	894	41	470	480	227	238
UNITED STATES							
St. Marvs R. (A)	3.848	1,253	49	485	484	232	237
Trout R. (E)	56	27	33	464	461	232	204
Ocaueoc R. (F)	1.794	452	36	445	456	177	2()4
Cheboygan R. (G)	14,584	1,809	37	456	462	161	207
Total or average	20,282	3.541	41	468	468	208	216
GRAND TOTAL OR AVERAGE	21,197	4,435	41	468	470	211	220

ANNUAL REPORT OF 1982

SEA LAMPREY CONTROL IN THE GREAT LAKES 99

PARASITIC SEA LAMPREYS

Commercial fishermen in Lake Huron submitted 960 sea lampreys in response to offers of rewards by the Control Units. A total of 787 were taken in U.S. waters (statistical districts MH-1, MH-2, and MH-4), whereas 173 were taken in Canadian waters (OH-1, NC-1, and GB-1). Most of the U.S. collection (586) came from the DeTour-Rogers City area. The increase in the number collected in U.S. waters in 1981 (1,296) may have been due to the offer of a higher reward (\$5) for live specimens to use in a mark and recapture study in that year. At the time of reporting, neither the U.S. nor the Canadian collections for 1982 are complete.

SPECIAL STUDIES

Radio telemetry study—A 2-year study to determine the movement, behavior, and spawning grounds of sea lampreys in the St. Marys River was completed in 1982. Preliminary laboratory and field tests in 1981 showed that surgically implanted transmitters had little effect on lamprey behavior. In 1982, 45 sea lampreys were implanted with transmitters and released. The lampreys were tracked for 44 days using boats, shoreline searches of the St. Marys River Rapids, and two land-based continuous recording systems located about 0.8 km (0.5 mile) upstream and 2.4 km (1.5 miles) downstream of the rapids. To determine whether movement varied at a particular stage of the spawning cycle, lampreys were released on June 30 (14), July 6 (13), July 14 (12), and July 21 (6). Most lampreys (32) were released along a dike about 1.6 km (1 mile) downstream of the rapids (primary site), and 13 were released about 24 km (15 miles) downstream of the rapids at a suspected spawning area north of Neebish Island (secondary site).

All of the animals set free at the primary and secondary sites initially moved upstream. Of the 32 released at the primary site, 27 remained in the rapids/locks region of the river; 3 initially moved into the rapids, then moved downstream about 11.3 km (7 miles) to the mouth of the Garden River, but within 10 days returned to the rapids area; and 2 passed through the compensating gates at the head of the rapids into the upper St. Marys River. Of the 13 released at the secondary site, 11 returned to the rapids region and 2 apparently died about 4.8 km (3 miles) downstream of the rapids while attempting to return.

The study shows sea lamprey spawning sites in the St. Marys River are limited to a few areas in the rapids region. Scuba divers determined habitat types and lamprey activity in areas frequented by radio-tagged lampreys from July 22 to July 29. Many spawning redds and lampreys were observed in several isolated areas of the rapids, in particular, along the southwest shore of Whitefish Island and below the U.S. Army Corps of Engineers power generating stations. Other areas in the river that appeared to contain suitable spawning habitat (north of Sugar and Neebish Islands and an area in the upper river west of Point Louise) were inspected, but no nests or lampreys were observed. Based on data from radio transmitters and the

SEA LAMPREY CONTROL IN THE GREAT LAKES 101

observations of divers, the experimental animals frequented the following spawning sites in the St. Marys River:

Upper rapids (10)

Lower rapids, primarily in a shallow area southeast of Whitefish Island (7)

Tailrace area of the U.S. Army Corps of Engineers powerhouses (10)

High water channel along north shore of Whitefish Island (2) Below Soo Edison generating station (1)

In addition, 2 lampreys died before spawning and the transmitters failed in 11 before spawning occurred (sufficient data were collected on 8 of these to indicate they also probably spawned in the rapids region).

Mark and recapture study—A study to determine the movement of parasitic-phase sea lampreys in northern Lake Huron and the streams in which they spawn was completed in 1982. In May–October, 1981, 830 sea lampreys captured by commercial fishermen in trap nets set for lake whitefish were marked and released at Rogers City (432) and from the Straits of Mackinac to DeTour (398). The lampreys were fin-marked with fluorescent pigment dyes (coded to indicate area and time of release) and released near the point of capture. During this segment of the study, nine (1%) of the marked feeding lampreys were recovered in commercial fishery nets. Most of the recaptured animals in 1981 were taken near the point of release. but one had moved from DeTour to a point south of Epoufette in Lake Michigan (112.6 km, 70 miles) in 3 weeks.

Marked sea lampreys were recovered in assessment traps as spawning adults in 1982. Traps were fished in 13 Lake Michigan and 7 Lake Huron tributaries, and 92 (11%) marked animals were taken in 9 of these streams. Although assessment traps were fished in seven tributaries of the eastern end of Lake Superior, one tributary of Lake Erie, and five tributaries of Lake Ontario, no marked lampreys were captured outside of Lakes Michigan and Huron. In addition, sea lamprey assessment traps were fished by the Canadian Unit at two sites in eastern Lake Superior, three sites in Lake Huron, and eight sites in Lake Ontario. Personnel of both Control Units were alerted to look for marked adults; however, none were recovered.

Most of the marked lampreys were captured in four Lake Huron streams (Cheboygan River, 48; Ocqueoc River, 3; St. Marys River, 14; and in the Echo River, a Canadian tributary of the St. Marys River, 1), but 26 were taken in five tributaries of Lake Michigan (Manistique River, 14; Carp Lake River, 9; and 1 each in the Peshtigo, Boardman, and St. Joseph rivers). The greatest distance traveled by a sea lamprey was about 466.7 km (290 miles), from the Rogers City region of Lake Huron (marked between July 17 and August 1) to the Berrien Springs Dam on the St. Joseph River, Lake Michigan (recaptured on May 3).

Data were analyzed to determine if relations existed among numbers marked, release sites, time of release, numbers recaptured, and river of recapture. About half (52%) of the recaptures were collected in the Cheboygan River. Although the spawning run in the Cheboygan River is very large, when compared with the catch of marked lampreys per 1,000 unmarked, no significant differences were observed between this river (3.3/ 1,000) and the St. Marys River (3.9/1,000). By comparison, the ratio in the Carp Lake River (10.4/1,000) was significantly higher, whereas that in the Ocqueoc River (1.7/1,000) was much lower. The apparent low ratio from the Ocqueoc River was unexpected since this river is within 32.3 km (20 miles) of where 432 of the parasitic sea lampreys marked in the Rogers City area were released.

Sea lampreys marked in the Rogers City area predominated in the returns in the Cheboygan River (33 of 48), whereas those marked in the Straits to DeTour area were significantly more abundant in the catch in the St. Marys and Echo rivers (10 of 15). The lampreys released in the Straits to DeTour area also were slightly more abundant in the Lake Michigan streams (15 of 26). One of the three marked sea lampreys recaptured in the Ocqueoc River was released in the Rogers City area. No correlation was apparent between time of release and streams of recapture. The number of marked lampreys collected from all 2-week release periods of 1981, individually and collectively, were distributed evenly in the recovery rivers.

Ocqueoc River barrier—After the termination of the electrical barrier on the Ocqueoc River in 1980, the site was modified into a low-head barrier dam. In 1981, the trap was undermined and some lampreys escaped upstream. In 1982, the combination of the low-head dam with a maximum drop of 36 cm (14 inches) during low water, a 15-cm (6-inch) overhanging lip, and a trapping operation resulted in the absence of sea lampreys above the site.

During the spring breakup there was no vertical barrier to sea lamprey migration. Later when sea lampreys were captured, May 1 to July 9, the vertical drop ranged from 8 cm (3 inches) to 33 cm (13 inches).

A search for nests in a 1.6-km (1-mile) stretch of the river below Ocqueoc Falls on four occasions did not reveal any evidence of spawning sea lampreys. Pretreatment surveys with electric shockers in several areas normally infested with young-of-the-year ammocetes were negative and no young-of-the-year larvae were collected above the barrier during chemical treatment of the Ocqueoc River.

These data suggest that under certain conditions low-head barrier dams can be extremely effective in stopping upstream migration of sea lampreys.

Use of artificial light—In 1982, a study was completed that showed the use of an artificial light significantly increased the efficiency of assessment traps in capturing spawning-phase sea lampreys in the Cheboygan River. Routine night observations in 1981 suggested this phenomenon, and a study was developed and conducted in cooperation with the National Fishery Research Laboratory, Hammond Bay Biological Station, and Marquette Biological Station. Tests were run over 20 consecutive nights (May 18-June 6). Two side-by-side, lightproof traps, each $1.8 \times 0.9 \times 1.2$ m (6)

 \times 3 \times 4 ft.) were equipped with a light which illuminated the funnels in the trap. Traps were designated as trap 1 and trap 2 (trap 2 was closer to shore). Randomized 45-minute trials of four lighting schemes (trap 1 lighted and trap 2 darkened, trap 1 darkened and trap 2 lighted, traps 1 and 2 lighted, and traps 1 and 2 darkened) were designed to determine whether light attracted lampreys and if one of the traps was more favorably positioned to catch lampreys than the other.

Overall, lighted traps collected about five times as many sea lampreys—5,766 of 6,983 (83%)—as did dark traps and the difference was highly significant (P < 0.01). Every statistical comparison between lighted and darkened traps, including even (both traps either lighted or darkened) and uneven (one trap lighted and the other darkened) lighting, for traps combined or for each trap individually, showed lighted traps caught significantly more sea lampreys than did darkened traps (P < 0.05).

The study also showed that the position of the trap in relation to the river bank contributed to different catch rates. A total of 5,919 of 6,983 (85%) sea lampreys were captured in trap 1. Significantly more sea lampreys were captured in trap 1 than trap 2, for periods when both traps were either lighted or darkened (P < 0.01) and for periods of uneven lighting (P < 0.05).

Lentic population estimates—Abundance estimates for sea lamprey ammocetes dwelling in lentic areas are essential to assess their potential contribution to adult stocks. The mark and recapture method has been used to estimate ammocete Abundance in streams. The estimates were considered reliable because they agreed with estimates of relative abundance based on pretreatment stream surveys. A study was conducted to determine whether the mark and recapture method could provide reliable estimates of larval populations in lentic areas.

A study area was selected offshore from the Carp River (Mackinac County, Michigan) a tributary of northern Lake Huron. The substrate was relatively homogenous. Scuba divers constructed a square grid of 16 plots, each plot $30.5 \times 30.5 \text{ m}$ ($100 \times 100 \text{ ft.}$). Parachute cord strung between stakes set at the corner of each plot delineated the grid on the bottom, whereas floats defined the 16 plots on the surface.

Sea lamprey ammocetes were collected from the Milakokia River (Schoolcraft County, Michigan), a tributary of northern Lake Michigan. A combination of dyes was used to mark four groups of ammocetes (180/ group) subcutaneously. The ammocetes were held for 3 days, caged, taken to four central plots off the Carp River, and released on the bottom by a diver. Those that were dead or could not burrow were removed. Each plot was sprayed with Bayer granules at a rate of 112.1 kg/ha (100 lbs./acre) after a 1-week acclimation period. Ammocetes were collected on the surface from boats and on the bottom by divers.

Percent recovery of ammocetes from the four marked groups was 15, 17, 25, and 33. The average of these recovery rates (22%) was divided into the number of unmarked ammocetes captured (301) to determine the den-

sity of larvae (818/ha, 330/acre) in the area surveyed. The area infested by larvae off the Carp River is about 11.3 ha (28 acres); hence, the lentic population was estimated at 9,243. Six (2%) of the unmarked larvae were transforming, and at this rate, 185 transformed individuals would be produced from the population.

The pattern of recovery was similar for three of the four marked groups. Most larvae were taken in the release plots, whereas other recoveries decreased as distance from the release sites increased. Of the marked larvae recovered, the percent captured in the release areas was 70, 64, and 61 for the three groups.

Further study is needed to determine whether recovery rates and numbers of ammocetes can be estimated in this simple manner. In addition, the influence of water depth, substrate, release method, ammocete size, and density of larvae on recovery rates should be more thoroughly investigated.

Efficiency of granular Bayer 73—Field studies were conducted in eight streams and two lentic areas of the Upper Great Lakes to assess the efficiency of granular Bayer 73 as a survey tool. During each of the 20 tests, 25–28 sea lamprey ammocetes were introduced into a 1 m² (10.8 sq. ft.) circular enclosure. After an acclimation period of at least 36 hours, Bayer 73 was applied to the area and the 1 m² (10.8 sq. ft.) surrounding the cage at the rate of 112 kg/ha (100 lbs./acre).

Mean recovery rate for the 20 tests was 53% (range, 5-100%). Ammocetes that emerged and began swimming accounted for 94% of the recoveries. The rest were partially emerged or lying on the substrate when the test ended. All larvae that emerged were placed in freshwater and held for 24 hours; mortality for the tests averaged 49%.

The pattern of larval emergence was related to water temperature. In 5 of 6 tests where temperature was lower than $15^{\circ}C$ (59°F), larvae were slow to emerge (none were recovered during the initial 40-minute period) and recovery rate was low (average, 8%) during the first 70 minutes. Also, emergence rate for larvae appeared to increase as exposure time increased. In two of the six tests, where the collecting period was 2 hours, 14% of the introduced ammocetes were captured from 40 to 70 minutes, whereas 43% were collected thereafter. In the 14 tests where water temperature was 15°C or higher, the response of larvae to Bayer 73 was more rapid (67% of the recoveries were taken in the initial 40-minute period) and recovery rates were greater (average, 57%) during the 70-minute period of collection.

Low conductivity, coupled with low temperature, may severely limit the effectiveness of Bayer 73. In the test where recovery rate was lowest (5%), conductivity and water temperature were 40 μ mhos/cm³ and 12°C (54°F). In the 19 tests (at all temperatures) where conductivity was 101 μ mhos/cm³, recovery rate was at least 16%.

Differences in recovery rate among tests could not be related to difference in pH (range, 7.2-8.6), total hardness (34-107 ppm CaCO₃), or substrate type (bottom composition varied from relatively pure sand to areas of heavy silt/detritus).

Lake Erie

No stream treatment program is in effect on Lake Erie, and no stream surveys were conducted in 1982. As a result of budgetary restrictions, the Canadian Unit suspended its adult assessment activities on Lake Erie streams in 1982. The U.S. Unit, however, continued its assessment in one stream.

SPAWNING-RUN SEA LAMPREYS

Assessment traps fished for the third successive year in Cattaraugus Creek captured 954 sea lampreys in 1982. The mean length and weight (497 mm and 276 g) of the spawning-run adults were about the same as those in 1981 (498 mm and 258 g), but remained slightly smaller than the sea lampreys in 1980 (512 mm and 284 g). The percentage of males decreased from 59 in 1981 to 50 in 1982.

LAKE ONTARIO

SURVEYS

A total of 47 tributaries to Lake Ontario (27 in Ontario and 20 in the U.S.) were surveyed for larval sea lampreys in 1982.

Reestablished sea lamprey larvae were found in six Ontario streams treated in the fall of 1980 or spring of 1981 (Duffin, Lynde, Oshawa, Farewell, Graham, and Proctor creeks) and three others (Grafton, Lakeport, and Salem creeks) treated in spring 1982. Survey of the Black River, the first there since the August 1980 treatment, discovered reinfestation both upstream and downstream of the dams in Dexter, New York. One residual larva (146 mm long) was obtained by a bait store operator in Dexter who had captured the animal while using a clam rake. Additional work on the Black River is planned for 1983 to measure relative numbers of sea lampreys, bearing in mind the difficulty in obtaining reliable survey results before the 1980 treatment. Six other New York streams (Snake, Sage, Rice, Wolcott, Third, and First creeks) showed no evidence of reestablished larvae.

Treatment evaluation surveys of streams treated in the fall of 1980 through 1982 indicated that significant escapement occurred in Orwell and Beaverdam brooks and Trout Creek, all tributaries to the Salmon River in New York. Smaller residual populations were also found in Duffin, Oshawa, Oakville, Deer, and Black creeks.

Distribution surveys were conducted on a number of streams in preparation for treatment in 1982 and 1983, whereas population surveys were conducted on other sea lamprey-producing streams to provide information supportive of future treatments.

Routine surveys on the Humber, Don, and Ganaraska rivers and Potter Creek had negative results.

TREATMENTS

Fourteen streams were treated with lampricides during the field season—8 in Canada and 6 in the United States (Table 9, Fig. 4). Sea lamprey larvae (many approaching transformation size) were abundant.

The spring treatments were conducted under near optimum water levels in most cases. The treatment of Oakville Creek was interrupted by heavy rains about half way through the treatment, but subsequent surveys indicated few residual larvae remained.

Treatments during September were completed under fairly low water levels and some fish mortality resulted. Moderate numbers of stonecats in Bronte Creek and white suckers, johnny darters, logperch, and yellow bullheads in Stony Creek were killed.

The treatments of Sterling and Ninemile creeks were completed by the New York State Department of Environmental Conservation under the observation and guidance of the Canadian treatment crew. This training exercise was designed to develop expertise for the Department of Environmental Conservation to conduct independent treatments on Finger Lake tributaries.

SPAWNING-RUN SEA LAMPREYS

A total of 1,625 spawning-phase sea lampreys were collected in trapping devices in eight north shore tributaries of Lake Ontario in 1982 (Table 10, Fig. 4). Portable traps were operated at dams on the Credit River and Oshawa, Bowmanville, and Wilmot creeks, and Shelter Valley Brook. A permanent trap built into a barrier dam was also used to collect lampreys in the Credit River and was the sole capturing device on the Humber River and Duffin Creek. A mechanical weir was used in Graham Creek.

A total of 533 spawning-phase sea lampreys were collected in portable traps from Bowmanville and Wilmot creeks and Shelter Valley Brook. Portable traps were operated in the Credit River and Oshawa Creek, but no sea lampreys were captured. Traps at all sites operated 7 nights per week, compared with 5 nights per week in past years. This improvement, in conjunction with the introduction of a second trap to Shelter Valley Brook, represents a significant increase of effort.

Traps incorporated into barrier dams were installed in the Credit and Humber rivers for the 1982 season. With the installation of the dam and trap on Duffin Creek in 1980 (first year of operation was 1981), there are now three of these structures in Lake Ontario streams. No sea lampreys were captured in the permanent trap in the Credit River (as was the result with the portable trap fished at the same site). This permanent trap was installed inside the fishway of the dam just prior to the 1982 season. Past trapping efforts in this river have always encountered difficulties. An old dam was washed out in 1980 and was replaced by a barrier dam and permanent trap in the fall of 1980, but flood water and ice damaged the barrier and destroyed the trap in 1981. High water hampered efforts in 1982.

Table 9. Details on the application of lampricides to streams of Lake Ontario, 1982.	
[Number in parentheses corresponds to location of stream in Figure 4.]	

							В	ayer 73			
		Discha	-	TF	^S M	Pov	vder	Gran	nules		eam ated
					Ingr.		Ingr.		used a		
Stream	Date	m ³ /s	f ³ /s	kg	lbs	kg	lbs	kg	lbs	km	miles
CANADA											
Grafton Cr. (4)	May 6	0.3	12	106	233	_		-		6.3	4
Lakeport Cr. (6)	May 10	0.4	16	415	913	_	-	-	-	14.7	9
Smithfield Cr. (8)	May 12	0.2	7	138	304		-	-	-	5.3	3
Port Britain Cr. (3)	May 14	0.2	7	163	360	-	-		-	9.7	6
Salem Cr. (7)	May 17	0.1	3	80	176	-		-	-	2.1	1
Oakville Cr. (2)	June 3	1.8	64	252	554	-	-	_	-	20.6	13
Shelter Valley Cr. (5)	Sept. 16	0.4	16	284	625	-	-	9	20	18.7	12
Bronte Cr. (1)	Sept. 19	1.4	50	509	1,120	4	8	5	10	35.6	22
Total		4.8	175	1,947	4,285	4	8	14	30	113.0	70
UNITED STATES											
Grindstone Cr. (11)	Apr. 29	0.1	35	178	392		-	-	-	39.3	25
Ninemile Cr. (13)	May 6	1.3	46	249	548	_	-	_	-	24.1	15
Sterling Cr. (14)	May 10	2.4	85	575	1,265	_	_	-	~	16.8	10
Little Sandy Cr. (10)	May 11	1.4	50	225	495	-	-	-	-	24.0	15
Little Salmon R. (12)	Sept. 9	0.6	23	147	323	-	-	-	-	12.5	8
Stony Cr. (9)	Sept. 13	0.2	7	79	174	-	-	-	-	5.3	3
Total		6.9	246	1,453	3,197	_	-	-	_	122.0	76
GRAND TOTAL		11.7	421	3,400	7,482	4	8	14	30	235.0	146

^a Sand granules coated with Bayer 73 at 5% by weight active ingredient.

able 9. Details on the application of lumpricides to streams of Lake Ontario. 1982. [Number in parentheses corresponds to location of stream in Figure 4.]	Bayer 73	TFM Powder Granules Stream	es		233 6.3 4	6	304 5.3 3	360 9.7 6	176 2.1	554 20.6 13	625 9 20 18.7 12	1.120 4 8 5 10 35.6 22	70		392	548 24.1 15		495 24.0	323 12.5	79 174 5.3 3	1,453 3.197 122.0 76	3,400 7,482 4 8 14 30 235.0 146
on the application parentheses c		Discharge at	m ^{3/s} f ^{3/s}		0.3 12	0.4 16	0.2 7	0.2 7	0.1 3	1.8 64	0.4 16	1.4 50	4.8 175				2.4 85	1.4 50		0.2 7	6.9 246	11.7 421
I able 9. Details [Number			Date		May 6	May 10	May 12	May 14	May 17	June 3	Sept. 16	Sept. 19			Apr. 29	May 6	May 10	May 11	Sept. 9	Sept. 13		
			Stream	CANADA	Grafton Cr. (4)	Lakeport Cr. (6)	Smithfield Cr. (8)	Port Britain Cr. (3)	Salem Cr. (7)	Oakville Cr. (2)	Shelter Valley Cr. (5)	Bronte Cr. (1)	Total	UNITED STATES	Grindstone Cr. (11)	Ninemile Cr. (13)	Sterling Cr. (14)	Little Sandy Cr. (10)	Little Salmon R. (12)	Stony Cr. (9)	Total	GRAND TUTAL

ANNUAL REPORT OF 1982

SEA LAMPREY CONTROL IN THE GREAT LAKES 107

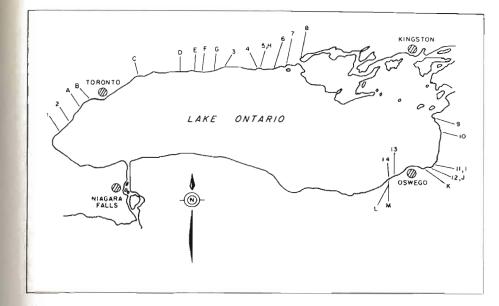


Figure 4. Location of streams tributary to Lake Ontario treated with lampricides (numerals; see Table 9 for names of streams), and of streams where sea lamprey collecting devices were fished (letters; see Table 10 for names of streams) in 1982.

Although 876 spawning-phase sea lampreys were captured in the trap in the dam on the Humber River in 1982, unanticipated problems encountered in this first year of operation probably limited the catch. Collections were made in this stream from 1968 to 1978 by dip netting, and the catch averaged about 3,300 adults annually. No collections were made in 1979, but in 1980, 104 specimens were taken in two portable traps. A limited dip net fishery in 1981 collected 609 lampreys.

The Duffin Creek barrier trap operation remained unchanged from 1981. A total of 149 sea lampreys were collected from April 30 to July 5 (66 nights), a significant reduction from the 293 adults taken in 1981.

Trapping effort at the mechanical weir on Graham Creek was reduced to 4 nights per week, compared with 5 nights in past years. Operations conducted during 32 nights from April 28 to July 5, captured 67 spawningphase sea lampreys.

A total of 1,364 spawning-phase sea lampreys were collected in portable traps in five tributaries on the south shore of Lake Ontario in 1982 (Table 10, Fig. 4), an increase of 100% over the total captured in 1981 (677). Little change in biological characteristics was observed from those sampled in 1981. Males composed a majority (60%) of the lampreys examined, a characteristic of the population prevalent since the first year of sampling in 1978. In contrast, females outnumbered males in populations of sea lampreys in Lakes Superior, Michigan, and Huron.

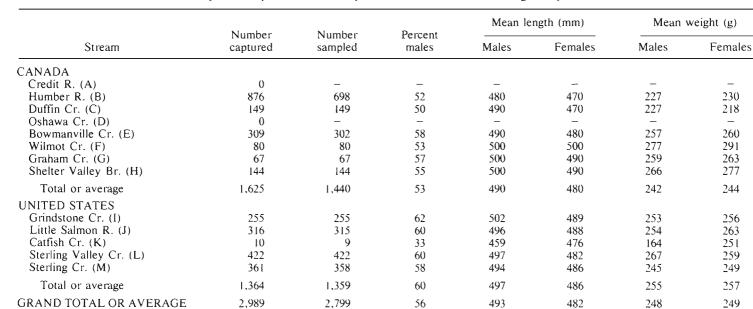


Table 10. Number and biological characteristics of adult sea lampreys captured in assessment traps in tributaries of Lake Ontario, 1982. [Letter in parentheses corresponds to location of stream in Figure 4.]

OF

	Number	Number	Derrent	Mean le	Mean length (mm)	Mean v	Mean weight (g)
Stream	captured	sampled	males	Males	Females	Males	Females
CANADA							
Credit R. (A)	0	I	ι	I			
Humber R. (B)	876	Xby	\$3	100			1
	140	0/0	75	400	4/0	177	230
	149	149	50	490	470	227	218
UNHAWA CI. (U)	0	I	1	ı	1	I	1
Bowmanville Cr. (E)	309	302	58	490	480	756	760
Wilmot Cr. (F)	80	80	53	500	2005	744	100
Graham Cr. (G)	67	67	57	S(N)	400	120	127
Shelter Valley Br. (H)	144	144	55	500	19()	76.2 766	C07
Total or average	1 625	1 440	\$2	100	000	007	
UNITED STATES			Ċ,	470	480	242	244
Grindstone (r. 1)	226						
	CC7	562	62	502	489	253	256
Control Salifion K. (J)	316	315	()9	496	488	254	2.94
	10	6	33	459	476	164	751
Sterling Valley Cr. (L)	422	422	()9	497	482	292	250
Sterling Cr. (M)	361	358	58	494	486	245	949
Total or average	1.364	1.359	60	497	486 4	755	757
GRAND TOTAL OR AVERAGE	000 0		ì		-	1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1
	606.7	661.7	56	493	482	248	p.L.C

SEA LAMPREY CONTROL IN THE GREAT LAKES 109

PARASITIC SEA LAMPREYS

For the third consecutive year, no parasitic-phase sea lampreys were submitted from the commercial fisheries in response to a reward.

SPECIAL STUDIES

Marking transforming sea lampreys in New York State-The Oneida--Oswego River system has long been suspected as a source of recruitment for parasitic-phase sea lampreys in Lake Ontario. In an effort to detect this emigation, 1,588 larvae undergoing transformation were fin-marked with fluorescent dyes and released near the point of capture in two tributaries of Oneida Lake. A total of 524 sea lampreys collected from Big Bay Creek were marked with a single fluorescent "kelly green" stripe in the posterior dorsal fin and released, and 1,064 from Fish Creek and its tributaries were marked similarly with fluorescent "rose tracer glo" and released.

Efforts have been made to coordinate the recovery of these marked sea lampreys during this parasitic phase in 1983. A notice will be issued to entrants in the Empire State Lake Ontario Fish Derby (April 1983) requesting the anglers to submit all sea lamprey specimens they collect to the New York State biologists who will monitor the catches at prearranged check points. A release has also been issued to area fishery management agencies, research institutions, and the news media advising of the release of marked sea lampreys in Oneida Lake tributaries and requesting the return of recaptured specimens to the Canadian Sea Lamprey Control Centre.

ANNUAL REPORT OF 1982

SEA LAMPREY AND RELATED RESEARCH AT NATIONAL FISHERY RESEARCH LABORATORY, HAMMOND BAY BIOLOGICAL STATION, AND MONELL CHEMICAL SENSES CENTER, 1982

F. P. Meyer, Director National Fishery Research Laboratory U.S. Fish and Wildlife Service La Crosse, Wisconsin 54601

J. G. Seelye Hammond Bay Biological Station U.S. Fish and Wildlife Service Millersburg, Michigan 49759

J. Teeter Monell Chemical Senses Center Philadelphia, Pennsylvania 19104

Abstract

A meeting was held at Marquette, Michigan, to prioritize the use of funds for sea lamprey control research by Fish and Wildlife Service (FWS). The research priorities identified one year earlier remained highest. These were: (1) development of nonchemical alternate control methods, (2) bottom-release formations, (3) alternate chemical lampricides, (4) determination of the basis for loss of Bayer 73 in streams, and (5) lamprey biology.

Dr. James G. Seelye was appointed Chief, Hammond Bay Biological Station (HBBS). Recruitment for a chemist at HBBS was underway.

Field tests of a TFM bar for treatment of ammocetes in small streams were successful. An application for registration of the bar formulation was submitted to Environmental Protection Agency (EPA) in December 1982. A new lampricide label was approved by EPA. The carrier for TFM, dimethylformamide (DMF) was exempted from a requirement of tolerance.

A study to determine if TFM has teratogenic characteristics was initiated.

Data on the environmental chemistry of TFM were submitted to EPA; EPA accepted the data as part of the package required for maintenance of TFM registration.

Tributyltin fluoride (TBTF) would be extremely difficult to register as a lampricide because of its toxicity to aquatic life and humans, potential for bioaccumulation, and lack of adequate mammalian safety tests. A recommendation was made that research on the compound be discontinued.

A 2% Bayluscide formulation released about 25% more active ingredient over I to 2 hours than the currently used 5% formulation. Even so, only 35% of the total material on the 2% granules was released in I hour.

The presence of heavy metal ions does not provide a synergistic effect to TFM, but their presence does contribute to the toxic units burden to which fish are exposed.

Both TFM and Bayer 73 are more strongly absorbed by silt substrates than by sand.

A significant degree of sterility was induced in sea lampreys exposed to radiation in a Gammacell-40 irradiator with-cesium 137 radiation source. Embryo mortality of progeny from irradiated males increased as the dosage increased. Males that received high levels of radiation (2,000 and 3,000 rads) became covered with fungus and died without spawning.

Experimental techniques for immunosterilization of sea lampreys failed. Injections and water baths of methallibure, a pituitary inhibitor, failed to sterilize adult male sea lampreys and is being dropped from further study.

Clay pellets containing 10% TFM (by weight of active ingredient) and another formulation containing 98% TFM and 2% Bayer 73 (10% active ingredient by weight) killed all sea lamprey ammocetes during 6-hour exposures when administered at 112.1 kg of total formulation per hectare. Both clay formulations showed good potential as bottom-release lampricides when compared to granular Bayer 73.

A mixture with 98% TFM and 2% Salicylanidide I was more toxic to ammocetes than TFM alone, but less toxic than a mixture of 98% TFM and 2% Bayer 73.

Traps with a beam of artificial light focused on the funnel opening from the inside were five times more effective in capturing adult sea lampreys than traps with no lights.

A bioassay indicated that sand shiners exposed 2.0 mg/L of TFM in Waiska River water were more sensitive than rainbow trout.

The response of female attracting substances in male sea lamprey urine are mediated by the olfactory system.

Administration and Personnel

RESEARCH PLANNING

A meeting to discuss the research needs of the sea lamprey control units and to prioritize the use of research funds was held 13 October 1982 at the Ramada Inn, Marquette, Michigan. This meeting was a followup to one held in October 1981 in response to expressed needs for greater input and communication between researchers at the Hammond Bay Biological Station and the control agents. The Sea Lamprey Audit Team report had indicated that such a need existed. The 1981 meeting was considered to have been very successful so a second one was scheduled to assess progress made and to reassess priorities for research. Thirty-two persons representing 10 agencies attended.

The discussion addressed 31 items previously submitted by U.S. and Canadian Sea Lamprey Control Units, State agencies, Great Lakes Fishery Commission, Lake Committees, and others who have responsibilities for sea lamprey control.

Foremost, the group expressed that the needs statements developed in 1981 still represented the highest priorities for research. Those priorities are:

- 1. Research on nonchemical alternate* control methods—work on bisazir, attractants and repellents (including light), irradiation sterilization, and immunosterilization should continue.
- 2. Bottom-release formulations—ongoing work with Bayer 73, TFM, TBT, and other compounds should continue.
- 3. Alternate chemical lampricides—screening of candidate compounds and evaluation of TBT should continue.
- 4. Study of basis for loss of Bayer 73 activity in streams must be expedited.
- 5. **Lamprey biology—including physiology and control of transformation process, factors affecting ammocete numbers, population dynamics of transformers, population of feeding lampreys, impacts on lake trout populations.

The scope of the 31 discussion items was overly broad so the group was asked to reduce the number to the highest priority topics. Many of the listed items were interrelated so those items were grouped by the primary topics. Nonresearch items were deleted from the list. Seven major topics were developed and prioritized as the primary items to be resolved if effort is available to go beyond the 1981 listings. By priority, these items were: 1. Assessment of lamprey populations at all life stages—This topic has many facets, including such problems of estimating numbers of ammocetes, transformers, feeding adults, and spawning adults. Estimation of numbers and population dynamics relationships between the various life stages.

The group was urged to collect data on the above subjects but to be sure to do so by design, not according to short-term goals. It was suggested that a statistician and/or modeler could provide valuable insights as to how control crews can develop types of data that would help answer their needs and provide valuable insight to other problems. Much of the data collection could be done in conjunction with ongoing control efforts. Situations that allow before/after assessments should be exploited as they provide unique insights to untreated population structures, impacts of treatments, mark and recapture studies, etc.

2. Bayer 73 problems—There was considerable discussion about the role of Bayer 73 in sea lamprey control. The loss of Bayer 73 in stream treatments is attributable to adsorption on clay/silt types of sediments that are high in organic matter. The U.S. agent described a facet of the problem not previously recognized; namely, loss of Bayer 73 detectability without loss of lampricidal activity. Their concern is that they are not confident they can monitor TFM:Bayer treatments accurately. La Crosse and HBBS agreed to pursue this area of concern.

The registration of Bayer 73 as a bona fide lampricide (not merely as a sampling tool) was also discussed. The carefully controlled Bayer applications yielded contrasting results consistent with knowledge of the effects of the bottom sediments in the two treatment areas. The Canadian agent stated that they felt 200 lbs. per acre would have yielded better control and asked that the use as a sampling tool be amended to allow that level of application. (The current label allows 100 lbs. per acre.) The question of using 2% granules at 250 lbs. per acre as opposed to 100 lbs. of 5% granules was aired. La Crosse will explore label revisions with EPA.

Both the U.S. and Canadian agents also asked that 8- and 12-hour LC50's for native Great Lakes fish species and pink salmon be developed. La Crosse and HBBS will provide the desired data.

A question was raised as to the possible use of Bayer 73 coated or impregnated yeast as a delivery system to take advantage of ammocete filter feeding. The question of whether or not TFM is toxic to yeast was considered. To be effective, levels of Bayer 73 would have to be sublethal to living yeast. While not urgent, HBBS will check this out when personnel and time permit.

The use of Bayer 73 by control agents is declining—even in combination with TFM. Even though the TFM:Bayer 73 combination can provide significant cost benefit ratios, the agents are no longer using the com-

^{*}It was decided that "supplemental" methods to chemical control is a better term since it does not imply replacement of chemical control.

^{**}Includes high priority work that exceeds the available expertise, facilities, and manpower at the HBBS and NFRL.

SEA LAMPREY AND RELATED RESEARCH 115

bination. Among reasons for nonuse were the difficulties in monitoring, the need for frequent analyses, complexity of analytical procedures, and the simplicity of merely increasing TFM levels. Cost impacts of the latter course of action were explored.

- 3. Fish/lamprey interactions—This problem centers on accurate estimates of predator and prey numbers. It includes physiological impacts of attacks on lake trout. While no consensus was reached, the problem will be explored at HBBS and with the Great Lakes Fishery Laboratory.
- 4. Supplemental control techniques—It was pointed out that the use of "alternate" control techniques implies "instead of" approaches to chemical control. The situation is rather one of supplementing the lampricide program.

The status of bisazir, methallibure, immunosterilization, radiation sterilization, and pheromone attractants were discussed. Methallibure and immunosterilization have proved ineffective and are being dropped from further consideration. Radiation sterilization has potential effectiveness, but may not prove feasible. Studies on this technique will continue. Bisazir studies at the time of the meeting, were in a holding pattern awaiting a Commission decision on funding identification of residues in treated lampreys after 24 hours of withdrawal.

The group was informed that an isolate that has positive attractant characteristics has been identified and that individual compounds in the isolate will be identified in the near future; several compounds may be ready for testing in the 1983 spawning season. La Crosse was asked to contact EPA as to the need for Experimental Use Permits and other possible regulatory requirements for field testing pheromones.

- 5. Residual ammocetes—Concern was expressed about ammocetes that escape the treatment program. The runs of spawning sea lampreys suggest that either treatments are not completely effective or that unidentified sources are providing the transformers. This problem is related to the assessment of sea lamprey numbers (Problem No. 1) and will require work on the part of all units in the sea lamprey control effort.
- 6. *Miscellaneous items*—Time did not permit a full discussion of the many other interesting topics. Several, however, were very intriguing. An observation was described of how knocking two rocks together in a tributary to Lake Champlain caused adult sea lampreys to beach themselves, suggesting that the use of sound and vibrations may be useful for control of sea lampreys.

The results of a 1982 study that revealed that placement of a light within a portable assessment trap increased the catch rate by 500% or more were also described. Possible use of the knowledge to help capture animals as a direct control or to obtain animals for other studies was discussed. Adult sea lampreys captured in the study were used for a number of research projects.

In summary, the group reendorsed the priorities set at the 1981 meeting and La Crosse and HBBS will continue work in these areas. HBBS and La Crosse will provide technical assistance to meet needs of the control agents in toxicity tests, improved trapping procedures, formulations work, and in designing studies that can be done by the control units to develop needed data. While not specifically stated, the feeling of the groups appeared to be that the meeting could now be effectively merged with that of the Sea Lamprey Management Committee.

HAMMOND BAY SUPERVISION

Dr. James G. Seelye was appointed to the position of Chief at the Hammond Bay Biological Station in May 1982.

Dr. Seelye holds Ph.D. and M.S. degrees in limnology and fishery biology from Michigan State University and a B.S. from Lake Superior State College. Previous to his being assigned at Hammond Bay, he worked for 5-1/2 years as a senior researcher at the Great Lakes Fishery Laboratory, Ann Arbor, Michigan. Prior to that, he was employed by the U.S. Army Corps of Engineers at the Waterways Experiment Station at Vicksburg, Mississippi.

Dr. Seelye's research interests have been related to contaminant problems and their impacts on the biological community. At the Great Lakes Fishery Laboratory, he studied the effects of PCB's and pesticides on the reproduction of lake trout in the Great Lakes. His publications include papers on contaminant effects, dredging related problems, and the effects of radiation on aquatic organisms. These research interests, coupled with his background and training, make him uniquely qualified to become an integral team member in the sea lamprey control research effort. Specifically, one of his immediate research assignments is to study why certain streams attract large numbers of spawning lampreys whereas, other apparently similar streams attract none. Hopefully, results of that work will provide valuable data that will complement ongoing studies on attractants and repellents.

Mr. Seelye's appointment increases the research staff at the Hammond Bay Biological Station to three professionals. Recruitment is under way for a fourth scientist with training in chemistry. For the past 2 years, the station has been two professionals short of the full research complement. Nine positions constitute full staffing of the facility.

LAMPRICIDE REGISTRATION ACTIVITIES

TFM BAR REGISTRATION

In December 1982, La Crosse National Fishery Research Laboratory (LNFRL) submitted a draft application to EPA for registration of the TFM Bar. The bar is proposed for use as an adjunct to the currently-used liquid TFM formulation in the control of sea lampreys. Use of the soluble bar will

significantly reduce manpower and equipment needs for the treatment of numerous small feeder streams.

LAMPRICIDE LABEL

In February 1982, the FWS was requested by EPA to update the existing labels for TFM to meet current registration requirements. FWS incorporated the supplemental label that covered the combined use of Bayluscide-Lamprecid (the new registered name for TFM) into the new draft final label and submitted it to EPA on 29 May 1982. EPA approved the label in July 1982 so current uses of TFM are now properly registered with EPA. The approved label covers both TFM and its combination with Bayer 73 and will remain valid until such time as EPA calls up the label for product review. Two issues remain to be resolved with EPA before we can say that the registration effort can be considered a closed matter. These isues concern hydrolysis products and photodegradation products. A waiver is being requested from the hydrolysis requirement. Data developed by John Carey of CCIW have been submitted on photodegradation products. Action by EPA is pending but a favorable review is anticipated on both isues. If EPA accepts these items, all requirements for establishment of a tolerance will have been met.

TERATOLOGY STUDY ON TFM

LNFRL reviewed the report of a range-finding study that is the initial part of a study to determine if TFM has teratogenic characteristics in rats. The range-finding study provided a basis for establishing low, medium, and high dose levels to be used in the teratology study. After discussions with EPA officials, LNFRL recommended that the levels of TFM be 25 mg/kg, 125 mg/kg and 250 mg/kg. Comments and recommendations were sent to Hazleton Raltech, Inc. in October 1982. EPA requested this study as part of the reregistration rquirements for the use of TFM as a lampricide.

ENVIRONMENTAL CHEMISTRY OF TFM

Data submitted by the FWS for environmental chemistry requirements of TFM were accepted by EPA in September 1981. The only studies still required to complete these requirements are a hydrolysis and a photodegration studies (with degradates identified). In June 1982, FWS submitted a copy of an article entitled "Photodegradation of the lampricide 3trifluoromethyl-4-nitrophenol (TFM). 1. Pathway of the direct photolysis in solution" by J. H. Carey and M. E. Fox for their review. EPA requested further information on the study; FWS is currently attempting to obtain this additional material from the authors.

TRIBUTYLTIN FLUORIDE AS A LAMPRICIDE

The Great Lakes Fishery Commission (GLFC) requested a status statement on the registrability of tributyltin fluoride (TBTF) as a lampricide. Upon checking with EPA, LNFRL determined that it would be extremely difficult to register TBTF because of its toxicity to aquatic organisms and humans, potential for bioaccumulation in the environment, and the lack of adequate mammalian safety tests. A status report was submitted to GLFC recommending that it no longer be considered as a candidate lampricide.

EXEMPTION OF TFM CARRIER

Dimethyformamide (DMF), when used in formulations of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM), is now exempt from a requirement of a tolerance. This ruling, issued by EPA on 10 March 1982, removes one of the last barriers to the establishment of tolerances for TFM in potable water, fish, meat, and milk.

SEA LAMPREY CONTROL RESEARCH-LA CROSSE

TFM BAR FORMULATION

A solid bar formulation of TFM was developed for treatment of ammocetes in small streams. The bar reduces the need for constant monitoring of TFM pumps during treatment and is more easily handled than liquid TFM for treatments of back-country streams.

The bar was used in field trials in a tributary of the Sturgeon River in the Upper Peninsula of Michigan. In the first trial, bars were placed where the stream velocity was about 0.4 ft/second. The bars dissolved in 6 hours instead of the 8 to 9 hours predicated and did not maintain a lethal concentration for the required time at the mouth of the stream. In a second trial, the bars were placed in a velocity of 0.2 ft/second. This time, the bars lasted for the predicted 9 hours and the treatment eliminated lamprey ammocetes from the stream. Treatments, thus far, have indicated that the bars must be placed where the water velocity is less than 0.25 ft/second if they are to last the 8 to 10 hours they were designed for. The bars seem effective and efficient for treating small streams. Three streams were treated with the bars and ammocetes were eliminated from all three.

An application for registration of the bar formulation was submitted to EPA in December 1982. The application included a new label, directions for use, chemistry and description of ingredients, and a summary of the existing safety and efficacy data.

CONCENTRATED TFM FOR BAR FORMULATION

To be acceptable, for use in the preparation of the TFM bar, formulations must contain at least 80% active ingredient. Hoechst Chemical had agreed to supply TFM for preparation of the bar, but were unable to do so in time for the LNFRL to prepare bars for the field season. Therefore, 10 L of 82% TFM were prepared by concentrating the 37% TFM lampricide formulation at the Southeastern Fish Control Laboratory; 2 L were prepared at La Crosse. Bars tested in 1982 were prepared from these batches of

concentrated TFM. Additional material will be needed in the manufacture of bars for field use so a supply must be found.

GRANULAR BAYLUSCIDE

The 5% formulation of granular Bayluscide registered for use as a sampling tool to determine sea lamprey populations in still waters, is only partially released under most conditions of use. MOBAY, the manufacturer of Bayluscide, provided the LNFRL with five samples of modified granular formulations. Two of the samples, similar to the present formulation but with added wetting and dispersing agents, released all of the active material within the top 2 ft. of the water column.

Release of Bayluscide by two of the formulations was no better than that obtained from the currently used 5% formulation but a 2% formulation released about 25% more active ingredient over 1 and 2 hour periods. The 2% formulation appeared to be an improvement over the 5% Bayluscide but, even so, only 35% of the active ingredient was released in 1 hour.

INFLUENCES OF CHLORINE AND METAL IONS ON THE TOXICITY OF LAMPRICIDES TFM AND BAYER 73

Fish kills associated with stream treatments for control of larval sea lamprey with TFM and Bayer 73 have led to a study to assess the influences of certain types of contaminants on the activity of the lampricides. We evaluated the effect of joint applications of TFM and Bayer 73 with chlorine, cadmium, copper, and zinc against rainbow trout, white suckers, and fathead minnows. The data were analyzed for LC50's, 95% confidence intervals, additive indices, and their ranges.

Additive indices quantitate the combined activity of the mixture and confidence intervals define significance. Additive toxicity (index of zero) indicates that the presence of additional chemicals does not cause a greater toxic effect than that which would have been expected from the toxic contributions of the individual components. Index values that are greater than zero indicate a synergistic effect; values less than zero indicate no synergism and may even reflect antagonistic action. If the range for additive toxicity overlaps zero, the effects are considered to be simply additive. One must be aware that the addition of more chemicals will increase the total number of toxic units with which the fish must cope. If the burden of toxic units already present is high, the addition of another compound may create a lethal situation, even though its individual effect might be sublethal.

Our data for the three species showed no unexpected increase in toxic activity (Table 1). In fact, with chlorine and the lampricides the results were less than additive for rainbow trout and fathead minnows.

Also, toxicity of TFM with copper and TFM with cadmium was less than additive against fathead minnows. Therefore, we concluded that the presence of heavy metal ions does not constitute a toxicological hazard (synergistic effect), but their presence does contribute to the toxic units to

Table 1.	Toxicity	of lampricides	TFM	and	Baye	r 73	in	combination	with	selected	
		contaminants	to fis	sh in	soft v	vater	at	12°C.			

Chaminal	Addit	ive toxicity index and	range
Chemical combination	Rainbow trout	White sucker	Fathead minnow
TFM and	(-)0.04	(+)0.02	(-)0.10
Bayer 73	(-)0.69 to (+)0.55	(-)0.58 to (+)0.64	(-)0.71 to (+)0.42
TFM and cadmium	(-)0.23	(+)0.07	(-)0.91
	(-)1.19 to (+)0.46	(-)0.92 to (+)1.20	(-)1.86 to (-)0.28
TFM and copper	(+)0.04	(-)0.01	(-)0.58
	(-)0.66 to (+)0.77	(-)0.84 to (+)0.79	(-)1.45 to (-)0.01
TFM and zinc	(-)0.06	(-)0.26	(-)0.16
	(-)0.72 to (+)0.52	(-)1.43 to (+)0.53	(-)0.88 to (+)0.39
TFM and chlorine	(-)1.04	(-)0.28	(-)0.63
	(-)1.90 to (-)0.45	(-)0.95 to (+)0.18	(-)1.41 to (-)0.10
Bayer 73 and cadmium	(-)0.73	(-)0.10	(-)0.38
	(-)2.54 to (+)0.18	(-)0.91 to (+)0.59	(-)1.09 to (+)0.09
Bayer 73 and copper	(-)0.22	(-)0.17	(-)0.16
	(-)1.55 to (+)0.70	(-)0.96 to (+)0.42	(-)0.78 to (+)0.31
Bayer 73 and zinc	(+)0.00	(-)0.42	(-)0.42
	(-)0.68 to (+)0.70	(-)0.56 to (+)2.13	(-)1.04 to (+)0.01
Bayer 73 and chlorine	(-)0.91	(+)0.39	(-)0.38
	(-)1.96 to (-)0.24	(-)0.12 to (+)1.15	(-)1.05 to (-)0.08

which fish are exposed. In addition, other chemicals or contaminants may contribute toxic units during field treatments. We suspect that the combined burden of all materials (cumulative toxic units) may be responsible for some of the kills of nontarget organisms.

Briefly, the data suggested that all combinations except with chlorine, produced strictly additive effects (additive index range overlapped zero) for rainbow trout and white suckers and less than additive effects (additive index range does not overlap zero) for fathead minnows. Accordingly, fathead minnows should be affected less than rainbow trout and white suckers when exposed to these chemical mixtures.

LAMPRICIDE SOIL BINDING

The adsorption of ¹⁴C-TFM (3-trifluoromethyl-4-nitrophenol) and ¹⁴C-RTFM (3-trifluoromethyl-4-aminophenol) was evaluated using bottom sediments from the Cedar River (silt), Ford River (sand/silt), and Tahquamenon River (sand) in Michigan. Reduced TFM (RTFM) is the primary microbial metabolite of TFM. Solutions of TFM or of RTFM were mixed with each sediments and allowed to come to equilibrium on an orbital shaker. The solutions were then centrifuged and analyzed for residues of the

SEA LAMPREY AND RELATED RESEARCH 121

chemicals in solution. Temperature (20°C) was controlled by an environmental chamber and pH's were maintained using phosphate or carbonate buffers.

The pH had little influence on the binding of RTFM to any of the three sediments. The adsorption of TFM, however, was influenced by pH, with un-ionized TFM (acidic) being more strongly absorbed by sediments than ionized TFM (basic). RTFM was more strongly adsorbed by Cedar River sediments than was TFM (Fig. 1). This trend continued with Ford River sediments (Fig. 2) and Tahquamenon River sediments (Fig. 3). More chemical was adsorbed by silt-type sediments than by sand (Fig. 4). This was especially true for TFM; the difference was about 12-fold at pH 7.0. Cedar River sediment (silt) adsorbed about 2.5 times as much RTFM as Tahquamenon River sediment (sand) at pH 7.0.

Preliminary results indicate that Bayer 73 was more strongly adsorbed to sediments from the Cedar, Ford, or the Tahquamenon rivers than TFM. Bayer 73 was also more strongly adsorbed to silt than to sand sediments.

BISAZIR

Bisazir is being investigated for possible use as a chemosterilant for adult sea lamprey. Samples of tissue from an adult sea lamprey treated with ¹⁴C-labeled bisazir were extracted successively with hexane, ethyl ether,



Figure 1. Adsorption of 1 mg/L solutions of ¹⁴C-TFM and ¹⁴C-R-TFM on Cedar River sediments at selected pH's.

Figure 2. Adsorption of 1 mg/L solutions of ¹⁴C-TFM and ¹⁴C-R-TFM on Ford River sediments at selected pH's.

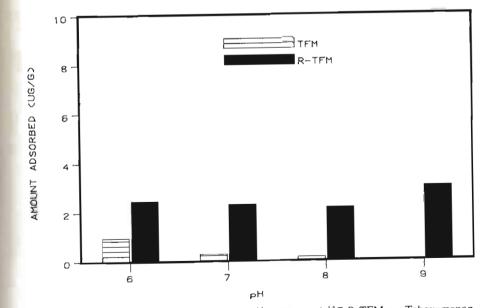
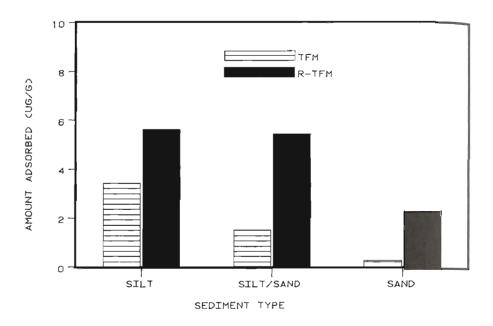
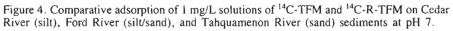




Figure 3. Adsorption of 1 mg/L solutions of ¹⁴C-TFM and ¹⁴C-R-TFM on Tahquamenon River sediments at selected pH's.

ANNUAL REPORT OF 1982

and methanol. Radioactive residues were present in all three solvents. Hexane contained more than methanol which contained more than ethyl ether. These results indicate that more than one metabolite of bisazir is present in residues in lampreys and that both nonpolar and polar residues are present.

TECHNICAL ASSISTANCE—LA CROSSE

EPA MASTER FILE ON TFM

The Canadian Department of Fisheries and Oceans requested a list of the materials in the EPA master file on TFM, a copy of the revised label for TFM, and a list of references on TFM and Bayer 73. These documents were provided to Dr. Pat Chamut (Director General-Ontario Region, Department of Fisheries and Oceans) in October 1982, for the Department's use in the registration of lampricides in Canada.

TFM-BAYER 73 LITERATURE LISTINGS

The literature on TFM and Bayer 73 has been updated by computer searches. These listings have now been entered on the word processor so updates can be made quickly and easily. Listings are available to interested persons upon request to the LNFRL.

ANALYSIS OF 'SLUDGE'' FROM LAMPRICIDE

Samples of a "sludge" from TFM cans were analyzed for the Sea Lamprey Control Centre, Sault Ste Marie, Ontario. The sludge was found to be predominantly TFM (66.5% TFM sodium salt).

TFM RESIDUES IN WATER SAMPLES FROM LUDINGTON BIOLOGICAL STATION

Over the years, TFM leaked into concrete floors in storage areas at the Ludington Biological Station, Ludington, Michigan. Some residues of TFM have leached into the effluent discharge. The effluent at the Station is now filtered through activated charcoal and monitored weekly for TFM residues in compliance with the station's EPA discharge permit. Concentrations of TFM must be no greater than 0.10 mg/L. LNFRL analyzed effluent samples for the Ludington Station. No Bayer 73 was detected in any of the samples. TFM concentrations were as follows:

Date sample collected	Concentration (mg/L)
12/07/81	< 0.005
2/14/81	< 0.005
12/21/81	0.033
12/28/81	0.070
1/04/82	0.078
1/11/82	0.079
1/18/82	0.063
1/25/82	0.089
1/25/82	

Sea Lamprey Control Research——Hammond Bay

METHODS FOR STERILIZING ADULT SEA LAMPREYS

The GLFC has endorsed development of an integrated sea lamprey control program that will combine continued applications of selective larvicides with other methods that may prove effective in order to achieve the desired level of control. A control method now being evaluated at the HBBS involves the release of sterilized, sexually-mature male sea lampreys into streams containing spawning populations of lampreys. In principle, sterile males will compete successfully with fertile males for mates, thereby reducing the reproductive success of the spawning population. A basic requirement for the successful application of the sterile-male-release technique is the development of a method of inducing sterility without causing serious adverse effects on mating behavior and competitiveness. Chemosterilants, gamma radiation, and immunological methods of sterilization have been tested in laboratory studies.

In 1982, gamma radiation, methallibure, and immunological techniques were tested as potential sterilants.

Gamma Radiation Study—Studies in 1981 showed that ionizing radiation had potential as a method for sterilizing male spawning-run sea lampreys. Males exposed to radiation doses of 1,000 and 2,000 rads from a cobalt-60 unit developed a high level of sterility (about 90%). Inquiries were then made regarding the specifications, cost, size, and safety requirements of different types of irradiators. One unit, the Gammacell-40 low dose rate laboratory irradiator, appeared to be suitable for laboratory use. The unit is smaller and less expensive than the cobalt-60 source. Laboratory studies to evaluate the effectiveness of this irradiator for sterilizing males were conducted in 1982.

Spawning-run lampreys were obtained from a trap on the Cheboygan River, Michigan, and transferred to HBBS. Groups of 15 male lampreys were exposed to radiation dosages of 500, 1,000, 2,000, or 3,000 rads from a Gammacell-40 irradiator (containing cesium 137 as a radiation source) at Wayne State University, Detroit, Michigan. Lampreys were exposed at a rate of 122 rads per minute. Ten lampreys from each group were weighed, fin-clipped, and placed in the artificial spawning stream at HBBS, along with normal males and females. The lampreys were observed periodically and those observed in the spawning act were removed and spawned artificially. One portion of the eggs stripped from each female was fertilized with sperm from an irradiated male; a second portion was fertilized with sperm from a normal male to provide a control.

Eggs were placed in 10 L glass jars containing 6 L of Lake Huron water. The jars were held in a constant temperature water bath at 18.3°C, the optimum temperature for development of sea lamprey embryos. Dead eggs and prolarvae were removed and counted when detected; oxygen levels were maintained near saturation with air bubblers. After 21 days of incubation, the study was terminated and live prolarvae were examined for abnormalities and counted. Prolarvae judged to be abnormal were usually so grossly deformed that survival was improbable.

Observations of the lampreys while in the artificial stream showed that males irradiated at doses of 500 and 1,000 rads exhibited no apparent adverse effects from the radiation treatment. Eight of the 10 males exposed to 500 rads, and seven of the 10 exposed to 1,000 rads were observed spawning. However, only three of the 10 males exposed to 2,000 rads, and one of 10 exposed to 3,000 rads, were observed spawning. Nearly all of the males exposed to 3,000 rads and many of those exposed to 2,000 rads became covered with fungus and died without spawning. It is probable that irradiation increased the susceptibility of the lampreys to infection. Wholebody irradiation is known to reduce natural resistance to infection and interrupt the normal immune response in other animals.

Results of the embryological portion of the study indicated that some degree of sterility was induced at all radiation dosages tested and that, generally, embryo mortality increased as the dosages increased (Tables 2-5).

Immunosterilization study—A cooperative study was conducted with the National Fish Health Research Laboratory (NFHRL), Leetown, West

Table 2. Effects of exposure of male spawning-run sea lampreys to a radiation dose of 500
rads from a Gammacell-40 irradiator (cesium 137) on the production of normal prolarvae
after 21 days incubation when treated males were artificially spawned with untreated
females. Each female spawned with a treated male was also spawned with a normal male
to provide a control.

Group	Total number eggs	Percentage dead	Percentage live, but abnormal	Percentage live and normal
Experimental	355	53.5	0.0	46.5
Control	502	8.0	0.6	91.4
Experimental	363	45.7	6.3	47.9
Control	390	52.3	0.0	47.7
Experimental	485	28.7	1.6	69.7
Control	567	26.5	0.0	73.5
Experimental	452	27.0	0.0	73.0
Control	477	18.2	0.4	81.3
Experimental	464	15.5	1.1	83.4
Control	769	13.3	0.1	86.6
Experimental	771	69.5	1.3	29.2
Control	562	66.0	0.0	34.0
Experimental	354	93.5	1.4	5.1
Control	584	74.5	0.3	25.2
Experimental	508	32.7	0.8	66.5
Control	531	5.6	0.2	94.2

Virginia, to investigate the potential for developing an immunological method for sterilizing male spawning-run sea lampreys.

Six groups of male lampreys were weighed, fin-clipped, and injected intraperitoneally with the following materials (obtained from NFHRL) at the dose rate of 10 mL/kg. Two to four males were injected in test groups.

- Group 1 Rabbit anti-lamprey sperm sera
 - 2 Rabbit anti-lamprey sperm sera that had been absorbed with lamprey skeletal muscle
 - 3 Rabbit anti-lamprey sperm sera that had been absorbed with lamprey skeletal muscle and mixed with Freund complete adjuvant (FCA)
 - 4 FCA only
 - 5 Lamprey sperm mixed with FCA
 - 6 Saline only

Injected lampreys were placed in the artificial stream at HBBS along with normal males and females. The lampreys were observed periodically and those observed in the spawning act were removed and spawned artifiTable 3. Effects of exposure of male spawning-run sea lampreys to a radiation dose of 1.000 rads from a Gammacell-40 irradiator (cesium 137) on the production of normal prolarvae after 21 days incubation when treated males were artificially spawned with a untreated females. Each female spawned with a treated male was also spawned with a normal male to provide a control.

Group	Total number eggs	Percentage dead	Percentage live, but abnormal	Percentage live and normal
Experimental	908	97.2	0.0	2.8
Control	443	26.0	0.0	74.0
Experimental	334	49.7	0.0	50.3
Control	469	64.2	0.0	35.8
Experimental	651	100.0	0.0	0.0
Control	677	73.7	0.0	
Experimental	590	99.8	0.0	0.2
Control	510	89.2	0.0	
Experimental	431	73.8	3.2	23.0
Control	470	100.0	0.0	0.0
Experimental	425	85.9	1.6	12.5
Control	454	55.5		42.3
Experimental	613	99.8	0.0	0.2
Control	380	62.1	0.0	

Table 4. Effects of exposure of male spawning-run sea lampreys to a radiation dose of 2,000 rads from a Gammacell-40 irradiator (cesium 137) on the production of normal prolarvae after 21 days incubation when treated males were artificially spawned with untreated females. Each female spawned with a treated male was also spawned with a normal male to provide a control.

Group	Total number eggs	Percentage dead	Percentage live, but abnormal	Percentage live and normal
Experimental	737	96.2	0.0 2.5	3.8
Control	517	6.0		91.5
Experimental	750	68.8	16.3	14.9
Control	419	5.3	7.2	87.6
Experimental	399	98.7	0.0	1.3
Control	452	72.6	0.0	27.4

cally. The eggs were fertilized and handled according to some procedures described under "Gamma Radiation Study" above.

Serum was collected from each injected male after it was artificially spawned and sent to the NFHRL where they performed the following imTable 5. Effects of exposure of male spawning-run sea lampreys to a radiation dose of 3,000 rads from a Gammacell-40 irradiator (cesium 137) on the production of normal prolarvae after 21 days incubation when treated males were artificially spawned with untreated females. Each female spawned with a treated male was also spawned with a normal male to provide a control.

Group	Total number eggs	Percentage dead	Percentage live, but abnormal	Percentage live and normal
Experimental	397	99.7	0.3	0.0
Control	491	99.4	0.0	0.6

munological tests: macroscopic agglutination with whole, washed sperm antigens; microtiter agglutination with washed sperm antigens; and gel precipitin tests with soluble antigens.

The results of this study indicate that the injections had no sterilizing effects on the lampreys. Low antibody titers were found in only one lamprey that had been injected with lamprey sperm mixed with FCA. All other test results were negative. The production of live, normal prolarvae in batches of eggs fertilized by semen from the injected males was generally good and no evidence of a reduced survival rate was observed.

Considering the negative results of this year's study, and with the concurrence of researchers at the NFHRL, we recommend that no further research be conducted on the possible use of immunosterilization techniques for sea lamprey control.

Methallibure Study—A study was conducted to determine the potential of methallibure, a nonsteroid, nonhormonal chemical inhibitor of pituitary activity, for use as a sterilant of male spawning-run sea lampreys.

Sixty males were immersed in a 1,000 mg/L suspension of methallibure for 24 hours. The lampreys were placed in a fiberglass tank containing 300 L of aerated Lake Huron water and maintained at temperature of 10° to 13°C. A stock suspension consisting of 300 g of methallibure, 600 drops of Tween 80, and 3,000 mL of Lake Huron water was stirred thoroughly and added to the tank. After 24 hours, the lampreys were removed, tempered to the incoming water temperature, and placed in a fiberglass tank receiving aerated Lake Huron water. Ten lampreys were placed in an artificial spawning stream at the laboratory. Of the remainder, five were sacrificed each week for gonadosomatic index (GSI) evaluations by the Alabama Cooperative Fishery Research Unit (ACFRU) at Auburn University. All lampreys were measured, weighed, and dissected to remove their gonads. The gonads were weighed, fixed in Bouin's solution for 7 days, and then transferred to 70% alcohol.

Sixty other males were injected intraperitoneally with 1,000 mg/kg of methallibure. A stock suspension consisting of 20 g of methallibure, 40

drops of Tween 80, and 200 mL dionized water was prepared. This suspension was injected at a rate of 10 mL/kg. Fifty lampreys were held and sacrificed at intervals for GSI evaluations and histological examinations of the gonads by the ACFRU. Ten were placed in the artificial spawning stream with normal male and female lampreys.

Lampreys in the artificial spawning stream were observed periodically; those observed in the spawning act were removed and spawned artificially. The eggs were fertilized and handled in the same way as described under "Gamma Radiation Study" above.

No changes in nest building or spawning behavior were noted in males that had been immersed or injected with methallibure. Eight of 10 males immersed in a 1,000 mg/L suspension were observed spawning, while only four of 10 injected males were observed spawning. It is not known if this is significant. Results of the embryological portion of this study showed that neither the immersion of male sea lampreys in a 1,000 mg/L suspension of methallibure for 24 hours (Table 6) or the injection of methallibure at 1,000 mg)kg (Table 7) had an adverse effect on the production of normal prolarvae when semen from treated males was used to fertilize eggs from normal females. No reduction in the survival rate of prolarvae was observed

Table 6. Effects of immersion of male sea lampreys in a 1,000 mg/l aqueous suspension of methallibure for 24 hours on the production of normal prolarvae after 21 days incubation when treated males were artificially spawned with normal females. Each female spawned with a treated male was also spawned with a normal male to provide a control.

Group	Total number eggs	Percentage dead	Percentage live, but abnormal	Percentage live and normal
Experimental	501	98.2	0.0	1.8
Control	556	100.0	0.0	0.0
Experimental	509	98.0	0.0	2.0
Control	572	98.8	0.2	1.0
Experimental	474	25.3	0.2	74.5
Control	579	62.9	0.7	36.4
Experimental	553	57.3	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	42.7
Control	472	19.3		80.7
Experimental	710	31.5	0.0	68.5
Control	556	29.7	0.0	70.3
Experimental	786	17.0	0.0	83.0
Control	455	6.6	0.9	92.5
Experimental	431	31.1	2.3	66.6
Control	537	35.2	1.3	63.5
Experimental	354	97.7	0.6	1.7
Control	318	99.7	0.0	0.3

Table 7. Effects of intraperitoneal injection of male sea lampreys with methallibure (1,000 mg/kg) on the production of normal prolarvae after 21 days of incubation when injected males were artificially spawned with normal females. Each female spawned with an injected male was also spawned with a normal male to provide a control.

nije e te e					
Group	Total number eggs	Percentage dead	Percentage live, but abnormal	Percentage live and normal	
Experimental	1,153	12.7	7.4	80.0	
Control	419	13.4	0.0	86.6	
Experimental	634	56.6	0.2	43.2	
Control	647	34.9	0.3	64.8	
Experimental	429	35.7	0.0	64.3	
Control	568	5.3	0.0	94.7	
Experimental	477	14.0	0.6	85.3	
Control	481	13.5	0.8	85.7	

and it was concluded that the treatments had no sterilizing effects on male spawning-run sea lampreys.

EFFICACY OF NEW FORMULATIONS OF REGISTERED TOXICANTS

Clay-pelleted formulations containing mixtures of TFM and Bayer 73 were tested to compare their toxicities with each other and with commercially available granular Bayer 73. Clay pellets containing 10% TFM by weight of active ingredient and other pelleted formulation containing a mixture of 98% TFM and 2% Bayer 73 (total active ingredient 10% by weight) killed all sea lamprey ammocetes during 6-hour exposures when administered at 112.1 kg of total formulation per hectare. Both clay formulations showed good potential as bottom-release lampricides when compared to granular Bayer 73. Additional bioassays were conducted to determine if the addition of Bayer 73 in the clay formulations was needed to potentiate activity of the clay mixtures. Data from these tests indicated that the TFM:Bayer 73 mixture was more toxic to larval sea lampreys than the formulation containing only TFM. Both formulations were selected for field evaluations and 90.8 kg of each have been ordered from a commercial formulator. The formulations will be tested against granular Bayer 73 under field conditions.

In anticipation of future field studies with these formulations, laboratory studies were conducted to measure the mortality of clayed and free ammocetes when dosed with two clay-pelleted formulations of TFM and Bayer 73. These studies indicated that the clay-pelleted lampricide was faster-acting on uncaged ammocetes than on caged ammocetes. Clay pellets suspended on top of the cages released the toxicant above the sediment surface and were not as effective in killing lampreys as were pellets that dropped directly to the bottom sediment.

ALTERNATIVE SEA LAMPREY LARVICIDES

Bioassay tests were conducted with a mixture of 98% TFM and 2% Salicylanilide 1 (Sal 1), TFM alone, and a mixture containing 98% TFM and 2% Bayer 73 to compare toxicity and selectivity. Bioassays were conducted using standard reconstituted water with a total alkalinity of 227 mg/L, total hardness of 46 mg/L, and pH 8.2. All test vessels were aerated for the 24'hour test period. Minimum lethal concentrations (concentrations producing 100% kill of sea lamprey) were determined at 9 hours of exposure.

Results indicated that the TFM-Sal 1 mixture was more toxic to lampreys than TFM alone, but not as toxic as the TFM:Bayer 73 mixture (Table 8). Data obtained on rainbow trout in the same tests demonstrated that the TFM-Sal 1 mixture was less selective to sea lampreys than the other test materials. Since no advantage was indicated in using Sal 1 over Bayer 73 as an additive for TFM, no further tests are scheduled for Sal 1 at this time.

FIELD TESTS OF ATTRACTANTS AND REPELLENTS FOR POTENCY

Light Study—Traps have been used for many years to assess populations of spawning sea lampreys in rivers that are tributaries to the Great

Table 8. Comparative toxicity, expressed as percent motality, of TFM and TFM/Sal 1 and TFM/Bayer 73. Fish exposed for 24 hours at 12°C.

Concentrations mg/L	100% 1	ſFM	98% TFM/2% Sal 1		98% TFM/2% Bayer 73	
	Lamprey	Trout	Lamprey	Trout	Lamprey	Trout
2.0	_	_	10.0	-	60.0	
3.0	-	-	20.0	-	*0.001	_
4.0	70.0	_	100.0	-	100.0	_
5.0	100.0	-	100.0	-	100.0	_
6.0	100.0	-	100.0*	10.0	0.001	20.0
8.0	100.0*	_	_	90.0	-	80.0
10.0	-	-		100.0		100.0
12.0	-	_	_	100.0	-	100.0
14.0				100.0	-	100.0
16.0	-	0.0	_	-	-	
18.0	-	0.0	_	-	_	-
20.0	-	0.0	_	-	_	-
22.0	_	30.0	_	~	_	
24.0		50.0	_	-	_	—
Control	0.0	0.0	0.0	0.0	0.0	0.0

*Denotes minimum lethal concentration at 9 hours exposure.

Lakes. These traps have funnel-shaped throats that allow migrating sea lampreys to enter a cage compartment. Spawning populations are sampled by placing these cages in streams where lampreys are expected to pass during their spawning runs. Thousands of adult lampreys have been taken in such traps from the Cheboygan River in Michigan since 1977. Although the traps capture many animals, we suspected that significant numbers managed to escape by exiting through the entry opening. In 1981, a flashlight was used to check whether lampreys were escaping. When a beam of light was focused on the funnel opening from inside the trap, it was noted that the number of lampreys entering the trap appeared to increase. These observations, along with results of preliminary tests, sugested a positive correlation between the incidence of artificial light and capture efficiency.

A cooperative field study was conducted in 1982 by the Hammond Bay Biological Station, Millersburg, Michigan, the Marquette Biological Station, Marquette, Michigan, and the National Fishery Research Laboratory, La Crosse, Wisconsin, to determine if artificial light could be used to enhance capture rates in the assessment traps. A double-compartmented trap was constructed and fished for 20 days during the peak of the lamprey spawning run in the Cheboygan River. An experimental design was developed with selected hours of fishing so that lighting of compartments could be alternated during specified trapping periods. A schedule was arranged that would minimize possible biases due to time of night, irregularity of migrant numbers, river stage, flow rates, temperature, or other possible factors.

During the course of the study, 6,983 adult sea lampreys were captured; 5,766 lampreys or 83% of the total were captured in the lighted compartments. The lighted compartments were approximately five times more efficient than the unlighted ones. The difference in catches was highly significant and demonstrated that the addition of an artificial light inside the trap was indeed effective for increasing the catch of spawning adult sea lampreys.

Sea lamprey control has been a continuing effort for United States and Canadian agents for nearly three decades. Although the use of lampricides has been the major thrust, innovations are needed for more efficient means to control this dreaded predator of Great Lakes fishes. The discovery of using artificial light to enhance the capture of spawning sea lamprey offers new insight into single as well as integrated management procedures. This technique will benefit sea lamprey control by augmenting trapping at barriers to provide better integrated sea lamprey management.

TECHNICAL ASSISTANCE-HAMMOND BAY

COMPARATIVE TOLERANCE OF THREE LAMPREY SPECIES TO TFM

Lampetra, Petromyzon, and Ichthyomyzon spp. ammocetes have been used, singly or in combination, in pretreatment bioassays for more than 20

years. The use of mixed genera of ammocetes may not have accurately defined minimum lethal concentrations for the target genus, *Petromyzon*.

Preliminary bioassays conducted in Lake Huron water at HBBS indicated that the native lampreys (*Lampetra* and *Ichthyomyzon*) are more tolerant to TFM than *Petromyzon*. The LC50 and LC99.9 for *Petromyzon* were 1.9 and 3.1 mg/L TFM, respectively; for *Lampetra*, 2.6 and 4.0 mg/L TFM respectively; and for *Ichthyomyzon*, 2.6 and 4.2 mg/L TFM, respectively. Additional bioassays are scheduled to be conducted under various test conditions to obtain more definitive results.

WAISKA RIVER BIOASSAY

The Waiska River, a soft-water stream tributary to Lake Superior, was chemically treated with TFM during the fall. Fyke nets fished during the treatment collected an unexpected number of dead cyprinids. The treatment concentration applied was selected on the basis of water chemistry measurements performed prior to the treatment. No pretreatment bioassay was conducted. At the request of the Marquette Biological Station staff, a bioassay was conducted with Waiska River water a few days after the TFM treatment to determine toxic concentrations of TFM in this soft water (total hardness, 24 mg/L; total alkalinity, 30 mg/L; and pH, 7.0). Sea lamprey larvae, fingerling rainbow trout, and sand shiners were exposed to a series of TFM concentration for 16 hours at 5°C. The results (Fig. 5) indicated that if the TFM concentration remained near 2.0 mg/L for a length of time, significant numbers of cyprinids would be killed. No rainbow trout were killed at 2.0 mg/L of TFM after 24 hours of exposure.

While the fish kill in the Waiska River treatment was not serious, the use of cyprinids as an indicator nontarget species in a pretreatment bioassay might have provided predictive data whereby those nontarget fish might have been better protected. The sea lamprey control program is perhaps the only pest control operation where pretreatment bioassays are conducted routinely in efforts to protect nontarget organisms and to minimize the use of chemicals. This tradition should be maintained; pretreatment bioassays should be a high priority consideration in the design of chemical treatments.

LOSS OF TOXICITY IN BAYER 73-TFM MIXTURES

Laboratory bioassay tests were conducted in support of the Ludington Biological Station field bioassay unit and with the help of the chemist from the Marquette Biological Station in an attempt to determine causes for the unexpected loss of toxicity from a mixture containing 99.5% TFM and 0.5% Bayer 73 (TFM/0.5B) compared to TFM alone. Bioassays were conducted with sea lampreys and rainbow trout in water from rivers scheduled for treatment. Packets of preweighed Bayer 73 and TFM were reweighed on the HBBS analytical balance and shown to be accurate. Gas chromatographic analysis was performed to determine if Bayer 73 was lost to the test containers (polyethylene bags) used in the field bioassays. No loss was

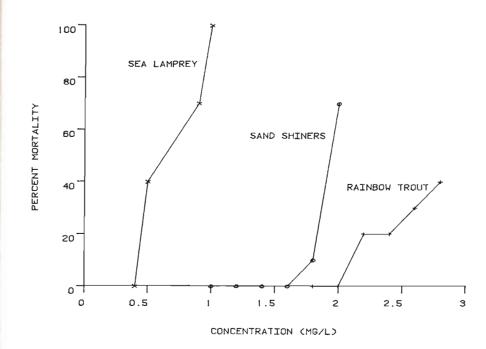


Figure 5. Toxicity of TFM in Waiska River water to sea lampreys, sand shiners, and rainbow trout (16-hour exposure at 5° C).

detected when no animals were in the test vessels. However, when the bioassays were conducted with Ocqueoc River water (alkalinity, 150 ppm) with lamprey and trout, the gas chromatographic analysis for Bayer 73 in the water showed a loss of up to 20% in the first 6 hours of the test. This loss of Bayer 73 to the fish in the tanks probably resulted in a decreased availability of the mixture of TFM and Bayer 73 to the test animals. We tentatively concluded that, under the conditions encountered on the Oc-queoc River (temperature, 12°C; alkalinity, 150 ppm), 99.0% TFM/1.0% Bayer 73 should have been the mixture of choice to maximize effective-ness. In consultation with the field bioassay crew, other possible causes (such as reduced temperature) for the loss of toxicity of TFM and Bayer mixtures are being considered.

OCQUEOC RIVER FYKE NETS AND TRAPS

Lamprey trapping was conducted in the Ocqueoc River in support of the Marquette Biological Station. Fyke nets fished in the fall of 1981 and spring of 1982 (1981–1982 migrational year) captured 16 recently metamorphosed sea lampreys. Spawning-run sea lamprey were captured in traps below the low-head barrier dam on the Ocqueoc River in the spring of 1982; the large, permanent trap captured 998 lampreys and a portable trap captured 880.

LIVE LAMPREYS

Live lampreys were provided to the following investigators: Dr. Jon Mallatt (Washington State University, Pullman, Washington); Dr. Stacia Sower (University of Washington, Seattle, Washington); Mr. Steve Walker (Tulsa Zoological Park, Tulsa, Oklahoma); Dr. Gerardo Vasta (Medical University of South Carolina, Charleston, South Carolina); Dr. Susan Moench (Colorado State University, Fort Collins, Colorado); Dr. John Teeter (Monell Chemical Senses Center, Philadelphia, Pennsylvania); Mr. Philip Cochran (University of Wisconsin, Madison, Wisconsin); and Dr. Douglas Anderson (National Fish Health Research Laboratory-Leetown, Kearneysville, West Virginia).

ASSISTANCE TO VISITING SCIENTIST

Dr. Stacia Sower, from the University of Washington, Seattle, Washington, spent the summer at the HBBS conducting experiment on the effects of various anti-estrogens, androgen antagonists, and LH-RH antagonists on spawning-run sea lampreys. Technical assistance, laboratory space, and experimental animals were provided to Dr. Sower.

Attractant and Repellent Research— Monell Chemical Senses Center

IDENTIFICATION AND CHARACTERIZATION OF SEA LAMPREY PHEROMONES

This report summarizes the results of experiments conducted during 1982 at the Monell Chemical Senses Center and at the HBBS to identify and characterize intraspecific chemical signals (pheromones) involved in sea lamprey migration and reproductive behavior. Such substances may prove useful in an integrated program of sea lamprey population management, either as highly selective lures to aid in capturing adults during spawning migration, or as agents to disrupt normal pheromone communication so that successful spawning is prevented or reduced.

The results of two-choice preference tests with over 5,000 adult sea lampreys during the 1977--1981 spawning seasons indicate that at least three different chemical signals may be involved in sea lamprey migration and spawning behavior. Two of these presumed pheromones, one released by sexually-mature males and the other by sexually-mature females, have tentatively been classified as sex attractants. The male pheromone is present in the urine of sexually mature, but not immature, males and elicits a preference response in spawning-run females. The female pheromone is present in ovarian fluid (and perhaps urine) of sexually mature, but not necessarily ovulated, females and elicits a preference response in spawningrun males. These signals are probably used primarily for short-range communication; perhaps during pair-formation or for release of spawning behavior. The possibility that they can function as long-range signals; however, has not been eliminated. Spawning-run females, which are not sexually mature, show preferences for the urine of sexually-mature males. Consequently, the presence of a relatively small number of sexually mature males, either near the mouth of a stream prior to migration or on the spawning grounds, could result in an aggregation of maturing females. The third chemical signal is released by sea lamprey larvae and appears to attract sexually immature, spawning-run adults. When sexually mature, the adults no longer respond to rinses of sea lamprey larvae. This means the response is very short-lived (a few weeks) and, consequently, it has not been as well characterized as the response to the sex attractants. This phenomenon suggests; however, the posibility that sea lamprey larvae are providing a chemical cue used by migrating adults to aid in selection of suitable streams in which to spawn. Such a substance might be useful as a long-range lure.

During the 1982 spawning season, efforts were directed at further purifying the behaviorally active compounds present in male urine so that they can be synthesized or bought in sufficient quantities for preliminary field tests. In addition, an experiment designed to determine which sensory system mediates the preference response of females to male urine was conducted.

MALE PHEROMONE

The results of a large number of two-choice preference tests conducted during the 1979–1981 spawning seasons have shown that: (1) the male pheromone is present in, and presumably released with, urine; (2) the behaviorally active compounds are released in quantities sufficient to elicit preference responses in females only after the males display secondary sex characteristics; (3) release of the male pheromone does not require that the males be spermiated (milt elicits no observable response in females); (4) females do not have to be ovulated to respond to the urine (females captured at the beginning of the migration are responsive to male urine); (5) concentrations of active urine as low as $6 \mu l/L$ of water in the test compartment can elicit a response in females; (6) the active compounds are relatively heat stable and can be concentrated by a variety of techniques including lyophilization and stored for up to 12 months with no appreciable loss of behavioral activity; and (7) the major active compounds have molecular weights of less than 1,000.

During 1982, preference tests were run with over 3,000 sea lampreys captured during upstream migration in the Cheboygan and St. Mary rivers. Urine was collected from males in pools of 100 to 400 ml and samples from each (12.8 μ l/L) were tested for behavioral activity with a minimum of 22 females. Samples of behaviorally active urine were then separated into three initial fractions by HPLC: a water fraction, a methanol:water fraction (60:30), and a methanol fraction. Samples of each of these fractions were

SEA LAMPREY AND RELATED RESEARCH 137

ANNUAL REPORT OF 1982

tested for activity and all three elicited preference responses in females (Table 9). Although this could be interpreted as evidence that the male pheromone consists of more than one active component, we believe that it is probably the result of incomplete separation of the active compound by this solvent system, with some of it getting into all three fractions. Alternative separation techniques are being examined.

The HPLC water fraction tended to be the most active and it was further fractionated by HPLC into six subfractions. Each of these fractions was tested for activity in the preference tanks and the results were presented in Table 9. Fractions #1-3 were all behaviorally active while fractions #4-6 elicited no preference responses in females.

Fraction #3 was examined using GC/MS. The reconstructed ion chromatogram of this fraction, generated using desorption-chemical ionization (DCI), is shown in Figure 6 and the mass spectrum of the major component of the ion chromatograph (peak 29) is shown in Figure 7. Methane gas was used to form the reagent gas plasma, the pressure was 0.17 torr., and the DCI probe current increased from 0 to 1,000 ma at a rate of 50 ma/sec. It is probable that m/z 236 of the mass spectrum (Fig. 7) is the parent ion, that m/z 251 is the [parent⁺ + CH₃⁺] adduct and that m/z 265 is the [parent⁺ + CH₃CH₂⁺] adduct. These results are tentative and await confirmation by comparison with a DCI mass spectrum using ammonia as the reagent gas. Although these data indicate that the major component of fraction #3 (peak 29) is probably a single compound, we do not know if it is the pheromone. It is possible that one of the smaller or unresolved components actually represents the pheromone. This can only be clarified

Table 9. Preference responses of female sea lampreys given a choice between lake water (control) and lake water plus fractions of male sea lamprey urine (experimental).

Test substance ¹	Mean $\%$ time (± SE) in experimental side	n	p ²
Male urine	64.7 ± 7.9	24	< 0.05
HPLC (methanol)	75.4 ± 8.1	23	< 0.01
HPLC (methanol:water)	70.5 ± 6.6	23	< 0.01
HPLC (water)	79.4 ± 7.5	24	< 0.01
Water fractions			
#	63.0 ± 6.4	23	< 0.05
#2	58.8 ± 4.2	24	< 0.05
#3	67.6 ± 6.3	23	< 0.05
#4	54.9 ± 4.4	24	NS
#5	59.3 ± 6.4	24	NS
#6	44.0 ± 5.8	23	NS

¹ Fractions were reconstituted in water and all fractions and urine were tested at 12.8 μ l/L.

²Wilcoxon matched-pairs signed-ranks test.

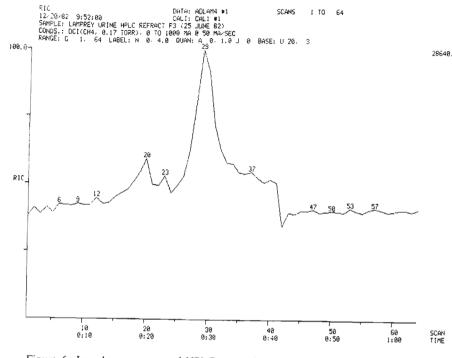


Figure 6. Ion chromatogram of HPLC water fraction #3 of bioactive male urine.

by attempting to further purify each active fraction and testing each component or purified compound in the preference tanks.

In excess of 2.3 L of urine was collected from sexually-mature male sea lampreys during the 1982 season. Although only about 600 ml of this urine elicited preference responses in females, this probably resulted from the test animals being unresponsive, rather than the pheromone not being present. An uncontrolled decrease of several degrees in the temperature of the water supply to the tanks in which the test animals were being held occurred on two occasions. A sudden decrease in water temperature has previously been observed to result in a loss of responsiveness to pheromones by both sexes. These samples were frozen and will be retested during the 1983 spawning-run.

OLFACTORY BASIS OF PREFERENCE RESPONSES

The tacit assumption has been that the observed preferences of spawning stage sea lampreys for conspecifics of the opposite sex are mediated by the olfactory system. Although the chemosensory basis of these responses is apparent, the possibility that gustatory or other unidentified chemorecep-

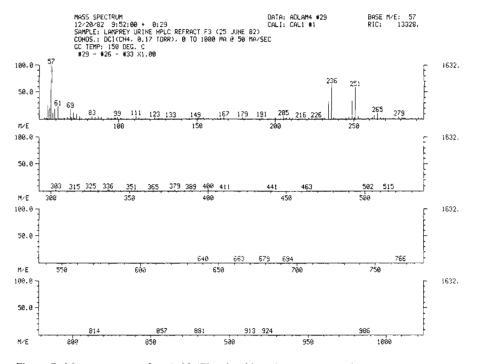


Figure 7. Mass spectrum of peak 29 (Fig. 6) of ion chromatogram of bioactive male urine.

tors (e.g., free nerve endings) are involved has not been eliminated. Consequently, an experiment was conducted in which the responses of sexually-mature females to behaviorally active male urine were observed in the preference tanks before and after they were made anosmic by plugging the olfactory capsule. The results are summarized in Table 10. Control and sham-operated animals showed a significant preference for male urine, while the anosmic females showed no preference. Responses of the anosmic group were significantly different from those of both control and shamoperated groups (p < 0.05; U-test). Control and sham groups were not significantly different from each other. These results clearly show that the response of female sea lampreys to attractant substances in male urine are mediated by the olfactory stystem.

Currently, an effort is being made to purify and identify the compounds represented by the major chromatographic peaks of behaviorally active fractions of male urine. These substances will be tested for behavioral activity as soon as responsive females are available this spring. In addition, preliminary field tests using either highly refined fractions of male urine or pure compounds have been designed and will be attempted when conditions are suitable.

SEA LAMPREY AND RELATED RESEARCH 139

Table 10. Preference responses of intact and anosmic female sea lampreys for urine	(25.6
μ l/L) from sexually-mature males.	-20.0

Test group	Mean % time (± SE) in experimental side	n	p ²
Control	71.9 ± 6.5	34	< 0.05
Sham ¹	68.2 ± 8.2	17	< 0.05
Anosmic ²	51.0 ± 8.1	16	NS

Sham-operated lampreys were randomly selected from the control group. Approximately 3 ml of lake water was injected from syringe into the olfactory capsule and a single stitch was made through the flap of skin surrounding the naris. Rather than tying a knot in the suture, it was pulled through the skin and the naris left patent.

² The remainder of the control animals were made anosmic by filling the olfactory capsule with a paste of Cebapol, an inert latex, which formed a solid plug blocking movement of water into and out of the olfactory capsule. A single stitch through the flap of skin around the naris prevented the plug from being dislodged.

PUBLICATIONS, SPECIAL REPORTS, AND PROPOSALS

TILL

PUBLICATIONS ON LAMPREY CONTROL AND RELATED AREAS

- Abidi, S. L. 1982. Detection of diethylnitrosamine in nitrite-rich water following treatment with rhodamine flow tracers. Water Research 16(2):199-204.
- Dawson, V. K. 1982. A rapid high-performance liquid-chromatographic method for simultaneously determining concentrations of TFM and Bayer 73 in water during lampricide treatments. Canadian Journal of Fisheries and Aquatic Sciences 39(5):778–782.
- Dawson, V. K., J. B. Sills, and C. W. Luhning. 1982. Accumulation and loss of 2',5dichloloro-4'-nitrosalicylanilide (Bayer 73) by fish: Laboratory studies. Investigations in Fish Control 90. 5 pp.
- Hanson, L. H. 198?. Twinning in the sea lamprey (Petromyzon marinus). (In review).
- Hanson, L. H., and E. L. King, Jr. 198?. The recapture of spawning-run sea lampreys (*Petromyzon marinus*) marked and released as recently metamorphosed individuals in a Lake Huron tributary. (In review).
- Lisowski, J. J., P. G. Bushnell, and J. H. Teeter. 198?. A re-circulating 2-choice preference tank for identifying potential chemical attractants and repellents for sea lampreys. The Progressive Fish-Culturist. (In review)
- Teeter, J. H., J. J. Lisowski, and P. G. Bushnell. 198?. Evidence for pheromone communication in landlocked sea lampreys (*Petromyzon marinus*). Canadian Journal of Fisheries and Aquatic Sciences. (In review).
- Teeter, J. H., J. J. Lisowski, and P. B. Johnsen. 198?. A possible role for pheromones in the spawning migration of the landlock sea lamprey (*Petromyzon marinus*). Canadian Journal of Fisheries and Aquatic Sciences. (In review)

SPECIAL REPORTS AND PROPOSALS ON LAMPREY CONTROL AND RELATED AREAS

- Allen, J. L., and V. K. Dawson. 1981. Factors affecting loss of Bayer 73 activity in streams. Proposal presented to the Great Lakes Fishery Commission, December 1981.
- Allen, J. L., and V. K. Dawson. 1981. Identification of bisazir residues in sea lamprey following treatment with the chemosterilant. A proposal presented to the Great Lakes Fishery Commission, December 1982.

- Gilderhus, P. A. 1982. Field trials of a solid bar formulation of the lampricide TFM. Special report. October 1982. 12 pp.
- Gilderhus, P. A. and R. A. Schnick. 1982. TFM bar application for new pesticide product registration. Submitted to FER, 17 December 1982. 62 pp.
- Hanson, L. H. 1981. Proposal for the evaluation of methallibure as a sea lamprey (*Petromy-zon marinus*) chemosterilant. Hammond Bay Biological Station, RFD, Millersburg, Michigan.
- King, E. L., R. A. Schnick, and J. G. Seelye. 1982. The potential of organotin formulations as lampricides: A special report prepared for the Great Lakes Fishery Commission, October 1982. 9 pp.
- Marking, L. L. 1982. Factors affecting the loss of Bayer 73 activity in laboratory tests. Proposal to the Great Lakes Fishery Commission, February 1982.
- Marking, L. L. 1982. Selection and screening of candidate lampricides. Proposal to the Great Lakes Fishery Commission, January 1982.
- Meyer, F. P., and staff. 1982. Alternate methods of sea lamprey control. Submitted to Division of Fishery Ecology Research, May 1982. 16 pp.
- Meyer, F. P., and staff. 1982. Annual report to Great Lakes Fishery Commission: Registration activities and sea lamprey control research on lampricides in 1980. Submitted to Great Lakes Fishery Commission, June 1982.
- Meyer, F. P., and staff. 1982. Progress report to Great Lakes Fishery Commission: Registration activities and sea lamprey control research, January-June 1982. Submitted to Great Lakes Fishery Commission, June 1982.
- Meyer, F. P., and staff. 1982. FWS Compliance to 1982 MOA with the Great Lakes Fishery Commission. Submitted to Regional Office, Twin Cities, Minnesota, 24 September 1982. 3 pp.
- Meyer, F. P., and staff. 1982. FWS Compliance to 1981 MOA with the Great lakes Fishery Commission. Submitted to Regional Officer, Twin Cities, Minnesota, 27 October 1982. Meyer, F. P. 1982. Briefing materials for the Laboratory Program Review Team related to the NFRL, La Crosse, WI. Sent to FER, 22 November 1982. Parts I-VIII.
- Schnick, R. A. 1981. Letter to EPA regarding exemption from tolerance for DMF. Submitted to Division of Fishery Ecology Research 21 December 1981 and forwarded to EPA, 7 January 1982. 2 pp. and appendices.
- Schnick, R. A. 1982. Revision of TFM label. Submitted to Division of Fishery Ecology Research, 18 May 1982 and forwarded to EPA, 20 May 1982. 3 pp.

ADMINISTRATIVE REPORT FOR 1982

MEETINGS

The Commission held its 1982 Annual Meeting in Green Bay, Wisconsin on 9–10 June and its Interim Meeting in Toronto, Ontario on 2–3 December. In addition, both Canadian and U.S. Sections met in plenary session on 10 June in conjunction with the Annual Meeting in Green Bay. The Commission held executive meetings of commissioners and staff as follows:

16 February21 April8 June14 September1 December	Ann Arbor, Michigan Detroit, Michigan Green Bay, Wisconsin conference call Toronto, Ontario
---	---

The Great Lakes Fishery Commission also met with the International Joint Commission in Ann Arbor, Michigan on 17 February 1982 to discuss items of mutual interest.

Meetings of standing committees during 1982 were:

Lake Ontario Committee, Gananoque, Ontario, 2-3 March
Lake Huron Committee, St. Clair, Michigan, 9-10 March
Lake Erie Committee, Columbus, Ohio, 16-17 March
Lake Michigan Committee, Michigan City, Indiana, 23-24 March
Lake Superior Committee, Sault Ste. Marie, Ontario, 30-31 March
Great Lakes Fish Disease Control Committee, Ann Arbor, Michigan, 1415 April
Sea Lamprey Committee, Detroit, Michigan, 20 April
Council of Lake Committees, Detroit, Michigan, 11 May
Board of Technical Experts, Green Bay, Wisconsin, 7-8 June and Detroit, Michigan, 1-2 November

Attendance at other Commission-related meetings included the sea lamprey control agents' annual sea lamprey conference, Integrated Pest Management Workshop, TFM Effects Committee, Integrated Management

ADMINISTRATIVE REPORT

of Sea Lamprey Steering Committee, Lake Trout Technical Committee, Board of Technical Experts (BOTE) Review Committee, BOTE/Fish Habitat Advisory Development meeting, Sea Lamprey Research meeting, and the Lake Trout Needs Workshop.

OFFICERS AND STAFF

142

Several changes in Commission membership occurred during 1982. W. P. Horn, Deputy Under Secretary, Department of the Interior, was appointed commissioner on 25 February. Commissioner Horn replaced G. R. Arnett who had served as Alternate U.S. Commissioner since June 1981. Chairman H. D. Johnston resigned 16 August to accept a new position as Federal Economic Development Coordinator, Prince Edward Island, Ministry of State for Economic and Regional Development. G. C. Vernon, Assistant Deputy Minister, Pacific and Freshwater Fisheries was appointed commissioner 25 November to replace Mr. Johnston. Commissioner and Canadian Section Chairman M. G. Johnson tendered his resignation and was succeeded by P. S. Chamut, Director General Ontario Region effective 25 November.

No changes in staff membership occurred during 1982, however, B. S. Biedenbender, Administrative Officer, was married 26 June and changed her name to B. S. Staples.

Committee assignments established in 1981 remained unchanged until June 1982. Elections were held and Commissioner H. D. Johnston was named GLFC Chairman for a two year period beginning June 1982. Voted into the position of Vice chairman was U.S. Commissioner W. P. Horn. Chairman Johnston assigned responsibilities among Commissioners, effective after the 1982 Annual Meeting as follows:

Finance and Administration Committee

Commissioners	Staff Members
W. P. Horn, Chairman	B. S. Staples
H. D. Johnston	C. M. Fetterolf

Fisheries and Environment Committee

Со	mmissioners
Κ.	H. Loftus
С.	Ver Duin

Staff Members R. L. Eshenroder M. A. Ross C. M. Fetterolf

Sea Lamprey Committee

Commissioners H. A. Regier, Chairman M. G. Johnson W. M. Lawrence

Staff Member A. K. Lamsa C. M. Fetterolf

BOTE Liaison

Commissioner	Staff Member
H. A. Regier	R. L. Eshenroder

National Sections-Commissioners elected chairmen for their respective national sections.

M. G. Johnson, Canadian Section Chairman C. Ver Duin, U.S. Section Chairman

When GLFC Chairman H. D. Johnston resigned from the Commission 16 Auust 1982, the Commission elected Commissioner K. H. Loftus as the new chairman. At the December executive meeting, Chairman Loftus made the following assignments to the Commission's committees, and the position of BOTE liaison:

Finance and Administration Committee

Commissioners	Staff Members
W. P. Horn, Chairman	B. S. Staples
G. C. Vernon	C. M. Fetterolf

Fisheries and Environment Committee

Commissioners C. Ver Duin P. S. Chamut

Staff Members R. L. Eshenroder M. A. Ross C. M. Fetterolf

Sea Lamprey Committee

Commissioners	Staff Member				
H. A. Regier, Chairman	A. K. Lamsa				
W. M. Lawrence	C. M. Fetterolf				

BOTE Liaisons

Commissioners	Staff Member
W. M. Lawrence	R. L. Eshenroder
K. H. Loftus	

Chairman Loftus did not at this time attach himself to a committee. Commissioner Chamut was named Canadian Section chairman.

STAFF ACTIVITIES

The Commission's staff (Secretariat) performs several major functions. The Secretariat provides assistance to the standing committees for all phases of the Commission's program. On behalf of the Commission it provides liaison with agencies and individuals with whom the Commission

ADMINISTRATIVE REPORT

deals, including assistance in coordinating fishery programs, planning meetings, arranging the presentation of reports, and preparation of minutes. The Secretariat provides direct assistance to the Commission in program development and acts on behalf of the Commission as circumstances may require.

During 1982 the staff participated in the following conferences, meetings, and activities:

American Fisheries Society Canadian Committee for Fisheries Research Fish Habitat Advisory Development Great Lakes Outdoor Writers Association International Association for Great Lakes Research International Joint Commission (IJC) IJC Science Advisory Board Lake Erie Workshop Lake Trout Rehabilitation Program Annual Meeting Lake Trout Technical Committee Michigan Sea Grant National Marine Fisheries Service North American Benthological Society Ontario Council of Commercial Fisheries Percid Community Workshop Wrap Up

REPORTS AND PUBLICATIONS

In 1982, the Commission published Annual Reports for 1978 and 1979, one paper in the Technical Report Series, three Special Publications, and one brochure.

- Green Bay in the future—a rehabilitative prospectus, by H. J. Harris, D. R. Talhelm, J. J. Magnuson, and A. M. Forbes. 1982. Great Lakes Fish. Comm. Tech. Rep. 38. 59 p.
- Recommendations for freshwater fisheries research and management from the Stock Concept Symposium (STOCS), by A. H. Berst and G. Spangler. 1982. Great Lakes Fish. Comm. Spec. Pub. 82-1. 24 p.
- A review of the adaptive management workshop addressing salmonid/ lamprey management in the Great Lakes, by J. F. Koonce (ed.), L. Grieg, B. Henderson, D. Tester, K. Minns, and G. Spangler. 1982. Great Lakes Fish. Comm. Spec. Pub. 82–2. 40 p.
- Identification of larval fishes of the Great Lakes basin with emphasis on the Lake Michigan drainage, by N. A. Auer (ed.). 1982. Great Lakes Fish. Comm. Spec. Pub. 82-3. 744 p.
- Sea Lamprey Management Program. 1982. Great Lakes Fish. Comm. Brochure.

ACCOUNTS AND AUDITS

The Commission's accounts for the fiscal year ending 30 September 1982 were audited by Icerman, Johnson, and Hoffman of Ann Arbor. The firm's reports are appended.

PROGRAM AND BUDGET FOR FISCAL YEAR 1982

At the 1980 annual meeting, the Commission adopted a program and budget for sea lamprey control and research in fiscal year 1982 estimated to cost \$6,359,000. The program called for continuation of sea lamprey control on Lakes Ontario, Huron, Michigan, and Superior, stream surveys to locate and monitor sea lamprey populations, continuing field research in direct support of control operations, the operation of assessment weirs on all the Great Lakes required to assess immediate and long-term effects of lampricides in the environment, research to improve present control techniques, including biological control, and construction of barrier dams on selected streams to prevent sea lamprey access to problem areas, thus improving control and reducing the use of expensive lampricides and application costs. A budget of \$448,400 was adopted for administration and general research for a total program cost of \$6,807,400. A portion of the increase in program costs over fiscal year 1981-\$200,000 was absorbed by the Commission using unobligated funds derived from bank interest and unexpended monies returned by the contract agents. The funding by governments for fiscal year 1982 was scheduled as follows:

Sea Lamprey Control and Research Administration and General Research	<i>U.S.</i> \$4,387,700 224,200	<i>Canada</i> \$1,971,300	<i>Total</i> \$6,359.000
TOTAL	\$4,611,900	224,200	448,400 \$6,807,400

Early in the fiscal year, both governments announced funding reductions which included the Great Lakes Fishery Commission's appropriations. The fiscal year 1982 budget was cut by \$468,100. Consequently, the funding by governments for fiscal year 1982 was rescheduled as follows:

	U.S.	Canada	Total
Sea Lamprey Control and Research	\$4,064,700	\$1,826.200	\$5,890,900
Administration and General Research	224,200	224,200	448,400
TOTAL	\$4,288,900	\$2,050,400	\$6,339,300

The Commission negotiated a Memorandum of Agreement with its U.S. agent, the U.S. Fish and Wildlife Service, for work costing \$3,255,100 which included contingency funding for registration-oriented research on lampricides. A Memorandum of Agreement was also executed with its Canadian agent, the Department of Fisheries and Oceans, for service costing \$2,058,900, including funding of barrier dams projects.

ADMINISTRATIVE REPORT

At the end of the fiscal year, the U.S. agent refunded \$27,376. The Canadian agent reported an overexpenditure of \$1,076. In addition the Commission earned \$382,900 in bank interest during fiscal year 1982. These monies were used to further the Commission's mandate in the Great Lakes such as the Great Lakes Ecosystem Rehabilitation Project, Adaptive Management Modelling, and several other research projects, as well as reducing future requests for funding.

A significant change in budgeting took effect in October 1982 when the Canadian Sea Lamprey Control Centre changed from the Canadian fiscal year of 1 April–31 March to the fiscal year used by the Commission (and U.S. government), namely 1 October–30 September. This, along with rendering the Canadian operations and budgets in U.S. dollars, will simplify future planning, budget preparation, and reporting.

PROGRAM AND BUDGET FOR FISCAL YEAR 1983

At the 1981 Annual Meeting, the Commission adopted a program and budget for sea lamprey control and research in fiscal year 1983 estimated to cost \$6,858,000. The program calls for continuation of sea lamprey control on Lakes Ontario, Huron, Michigan, and Superior, stream surveys to locate and monitor sea lamprey populations, continuing field research in direct support of control operations, the operation of assessment weirs on all the Great Lakes, required research to assess immediate and long-term effects of lampricides in the environment, research to improve present control techniques, including biological control, and construction of barrier dams on selected streams to prevent sea lamprey access to problem areas, thus improving control and reducing the use of expensive lampricides and application costs. A budget of \$590,600 was adopted for administration and general research for a total program cost of \$7,448,600. The Commission approved the use of \$310,000 from fiscal year 1981 unobligated funds to reduce funding requests to governments. Thus, the total request was to be \$7,138,600 shared by the Canadian and U.S. Governments according to contribution formulas.

Following requests by both governments, total costs were reduced by \$731,600. The revised program for sea lamprey management maintains operations considered essential such as pre-treatment surveys and lampricide treatments, the use of portable assessment traps (some reductions), research at Hammond Bay and La Crosse Labs, and the barrier dam program. Cutbacks included substantial reductions in sea lamprey survey work aimed at monitoring previously unused streams tributary to Lakes Ontario and Erie, some minor reductions in surveys in the Upper Great Lakes, and reductions in lampricide purchases and U.S. supervisory and administrative costs. In addition, the budget for administrative and general research was reduced by about \$19,000.

The major effect of the program reductions will be a long term threat because of lessened surveillance of potential lamprey spawning streams. No immediate damage to the program is expected. However, if the program reductions have to be maintained for several years, the threat will increase and undetected sea lamprey populations could develop.

The funding by governments for fiscal year 1983 is scheduled as follows:

	U.S.	Canada	Total
Sea Lamprey Control and Research	\$4,026,600	\$1,809,000	\$5,835,600
Administration and General Research	285,700	285,700	571,400
TOTAL	\$4,312,300	\$2,094,700	\$6,407,000

PROGRAM AND BUDGET FOR FISCAL YEAR 1984

At the 1982 Annual Meeting, the Commission adopted a program and budget for sea lamprey control and research in fiscal year 1984 estimated to cost \$6,366,500. The program calls for continuation of sea lamprey control on Lakes Ontario, Huron, Michigan, and Superior, stream surveys to locate and monitor sea lamprey populations, continuing field research in direct support of control operations, the operation of assessment weirs on all the Great Lakes, required research to assess immediate and long-term effects of lampricides in the environment, research to improve present control techniques, including biological controls, and construction of barrier dams on selected streams to prevent sea lamprey access to problem areas, thus improving control and reducing the use of expensive lampricides and application costs. A budget of \$619,000 was adopted for administration and general research for a total program cost of \$6,985,500. The Commission approved the use of \$509,800 from fiscal year 1982 unobligated funds to reduce funding requests to governments. Thus, the total request will be \$6,475,700 shared by the Canadian and U.S. Governments according to the contribution formulas.

2

ICERMAN. JOHNSON & HOFFMAN Certified Public Accountants 620 City CENTER BUILDINO 220 E. HURON STREET ANN ARBOR. MICHIGAN 46104-1957 (313) 766-6200

0171615 ANN ATTON, MICHIGAN HOTTEL, HISHIGAN 1

) 5 BURT, C P A C 7 BURT, C P A D 8 BURT, BE, C P A J E 10(T5, C,P,A J E 10(T5, C,P,A J E 10(T5, C,P,A C B, BURDAR, C P,A C B, DUBBAR, C P,A E, BURBAR, C P,A B,D, REMORICES, C P,A

To the Great Lakes Fishery Commission Ann Arbor, Michigan

We have examined the statements of certain assets, liabilities and fund balances resulting from cash transactions of the Great Lakes Fishery Commission as of September 30, 1982, and the related statements of cash receipts and disbursements and changes in fund balances for the year then ended. Our examination was made in accordance with generally accepted auditing standards and, accordingly, included such tests of the accounting records and such other auditing procedures as we considered necessary in the circumstances.

As described in Note 1 to the financial statements, the accompanying statements are prepared on the cash basis of accounting, and accordingly, they are not intended to be presented in conformity with generally accepted accounting principles.

In our opinion the financial statements referred to above present fairly certain assets, liabilities and fund balances arising from cash transactions of the Great Lakes Fishery Commission as of September 30, 1982, and the cash transactions for the year then ended, in conformity with the Commission's cash basis of accounting, as described in Note 1 to the financial statements, applied on a basis consistent with the preceding year.

Seeman Johnson + Hoffman

Ann Arbor, Michigan December 21, 1982 GREAT LAKES FISHERY COMMISSION

STATEMENTS OF CERTAIN ASSETS, LIABILITIES AND FUND BALANCES RESULTING FROM CASH TRANSACTIONS September 30, 1982

ASSETS	Administration and General Research Fund	Sea Lamprey Management and Research Fund	Totals (Memorandum Only)
Cash, including certificates of deposit of \$2,705,029 Due from United States Fish and Wildlife Service (Note 2) Due from Canadian Department of Fisheries and Oceans (Note 2) Due from Sea Lamprey Management and Research Fund (Note 2)	\$1,134,485 45,507	1,684,621 26,847 18,660	2,819,106 26,847 18,660 45,507
Total Assets	\$ <u>1,179,992</u>	<u>1,730,128</u>	2,910,120
LIABILITIES AND FUND BALANCES Liabilities: Due to Administration and General Research Fund (Note 2)	\$ _	45,507	45,507
Fund Balances: Reserved for specific projects (Note 3) Reserved for barrier dam projects Reserved for lampricide purchases Designated for subsequent years'	243,108	1,365,200 219,893 310,000	243,108 1,365,200 219,893 310,000
expenditures (Note 5) Undesignated Total Fund Balances	<u>936,884</u> 1,179,992	(210,472) 1,684,621	<u>726,412</u> 2,864,613
Total Liabilities and Fund Balances	\$ <u>1,179,992</u>	1,730,128	2,910,120

See Notes to Financial Statements.

GREAT LAKES FISHERY COMMISSION

STATEMENTS OF CASH RECEIPTS AND DISBURSEMENTS AND CHANGES IN FUND BALANCES Year Ended September 30, 1982

	Administration and General Research Fund		Sea Lamprey Management And Research Fund			Totals (Memorandum Only)			
	Budget	Actual	Variance - Favorable (Unfavorable)	Budget	Actual	Variance - Favorable (Unfavorable)	Budget	Actual	Variance - Favorable (Unfavorable)
Receipts: Canadian government United States government Interest earned	\$ 224,200 224,200	112,100 224,200 382,838	(112,100) 382,838	1,747,406 4,064,700	1,597,937 4,064,700	(149,469)	1,971,606 4,288,900	1,710,037 4,288,900 382,838	(261,569) 382,838
Niscellaneous	448,400	668 719,806	668 271,406	5,812,106	<u>44,909</u> 5,707,546	<u>44,909</u> (104,560)	6,260,506	<u>45,577</u> <u>6,427,352</u>	45,577
Disbursements: Canadian Department of the Fisheries and Oceans United States Fish and Wildlife Service Lampricide purchases Special studies Barrier Dams Administration General research	331,000 158,571 489,571	344,762 248,077 592,839	(13,762) (89,506) (103,268)	1,462,796 3,255,100 1,056,000 50,000 444,417 6,268,313	1,367,005 3,031,338 772,120 35,700 99,832 5,305,995	95,791 223,762 283,880 14,300 344,585 962,318	1,462,796 3,255,100 1,056,000 50,000 444,417 331,000 158,571 6,757,884	1,367,005 3,031,338 772,120 35,700 99,832 344,762 248,077 5,898,834	95,791 223,762 283,880 14,300 344,585 (13,762) (89,506) 859,050
Excess of Receipts Over (Under) Disbursements	<u>(41,171</u>)	126,967	168,138	(456,207)	401,551	857,758	(497, 378)	528,518	1,025,896
Other Sources (Uses): Foreign exchange gains (losses) Interfund transfers (Note 2)	-0-	(1,410) <u>26,847</u> 25,437	(1,410) 26,847 25,437	-0-	(2,000) - <u>(26,847)</u> - <u>(28,847</u>)	(2,000) (26,847) (28,847)	-0-	(3,410) (3,410)	(3,410) (3,410)
Excess of Receipts and Other Sources Over (Under) Disbursements and Other Uses	(41,171)	152,404	193,575	(456,207)	372,704	828,911	(497,378)	525,108	1,022,486
FUND BALANCE - October 1, 1981	1,027,588	1,027,588	-0-	1,311,917	1,311,917	-0-	2,339,505	2,339,505	-0-
FUND BALANCE - September 30, 1982	\$ <u>986,417</u>	1,179,992	193,575	855,710	1,684,621	828,911	1,842,127	2,864,613	1,022,486

See Notes to Financial Statements.

	Adr Gene	Administration and General Research Fund	and 1 Fund	Sea	Sea Lamprey Management And Research Fund	gement Fund	Ĩ	Totals (Memorandum Only)	(/1
	Budget	Actual	Variance - Favorable (Unfavorable)	Budget	Actual	Variance - Favorable (Unfavorable)	Budget	Actual	Variance - Favorable (Unfavorable)
Receipts: Canadian government United Staks government Interest earned Miscellameous	\$ 224,200 224,200 448,400	112,100 224,200 382,838 719,806	(112,100) 382,838 668 271,406	1,747,406 4,064,700 5,812,106	1,597,937 4,064,700 44,909 5,707,546	(149,469) 44,909 (104,560)	1,971,60 6 4,288,900 <u>6,260,506</u>	1,710,037 4,288,900 382,838 45,577 6,427,352	(261,569) 382,838 45,577 166,846
Disbursements: Canadian Department of the Fisheries and Oceans United States Fish and Wildlife Service Lumpricide purchases Special studies Barrier Dams Barrier Dams General research	331,000 158,571 4 <u>89,571</u>	344,762 248,077 592,8 <u>39</u>	(13,762) (13,506) (103,268)	1,462,796 3,255,100 1,056,000 50,000 444,417 6,268,313	1,367,005 3,031,338 772,120 35,700 99,832 5,305,995	95,791 223,862 283,862 14,300 344,585 962, <u>318</u>	1,462,796 3,255,100 1,056,000 50,000 444,417 331,000 158,571 5,757,884	1, 367, 005 3,031, 338 772, 120 95, 700 94, 762 5, 899, 834	95, 791 223, 862 283, 880 14, 300 14, 585 (13, 762) (13, 762) (13, 762)
Excess of Receipts Over (Under) Disbursements	(41,171)	126,967	168,138	(456,207)	401,551	857,758	(497,378)	528,518	1,025,896
Other Sources (Uses): Foreign exchange gains (losses) Interfund transfers (Note 2)	-0-	(1,410) 26,847 25,437	(1,410) 26,847 25,437	Ş	(2,000) (26,847) (28,847)	(2,000) (26,847) (28,847)	-0-	(3,410) (3,4 <u>10</u>)	(3,410) (<u>3,410</u>)
Excess of Receipts and Other Sources Over (Under) Oisbursements and Other Uses	(171,17)	152,404	193,575	(456,207)	372,704	828,911	(497,378)	525,108	1,022,486
FUND BALANCE - October 1, 1981 FIND RALANCE - Sentember 30 1982	1,027,588 \$ 986.417	1,027,588 1,179,992	-0- 193,575	855,710	1, <u>311,917</u> 1,684,621	-0- 828,911	2, 339, 505 1, 842, 127	2, 339, 505 2, 864, 613	-0- 1,022,486
See Notes to Financial Statements.									

RAI ANCES FUND H IANGES AND CHA 1982 GREAT LAKES FISHERY COMMISSION AND DISBURSEMENTS A Ended September 30, RECENPIS Year E CASH Ч STATEMENTS

GREAT LAKES FISHERY COMMISSION

NOTES TO FINANCIAL STATEMENTS

Note 1. NATURE OF ORGANIZATION AND SIGNIFICANT ACCOUNTING POLICIES

Nature of the organization:

3

The Commission is an international organization created by convention between the United States and Canada, established to manage sea lamprey and improve fish stocks. The Commission operations are controlled by two funds:

- 1. Administration and General Research Fund which covers administrative expenses of the Commission and expenses of programs of general research contracted by the Commission or performed by the Commission's staff. The United States and Canada provide equal shares for its support.
- 2. Sea Lamprey Management and Research Fund which covers expenditures for the Lamprey Management Program including research on the sea lamprey. The Commission presently contracts the Lamprey Management Program to the United States Fish and Wildlife Service and the Canadian Department of Fisheries and Oceans. Funds for its operations are provided by the United States and Canada on a 69:31 basis.

No transfers of appropriations may be made between funds unless authorized by the Commission except as referred to in Notes 1 and 3.

Significant accounting policies:

Basis of accounting:

The Commission's accounts are maintained on a cash basis, and the statements of certain assets, liabilities, and fund balances resulting from cash transactions and the statements of cash receipts and disbursements reflect only cash received and disbursed. Therefore, receivables, inventories, fixed assets, payables, accrued income and expenses, and depreciation, which are material in amount, are not reflected and these statements are not intended to present the financial position or results of operations or changes in financial position in conformity with generally accepted accounting principles.

Fiscal year:

The Commission's September 30 fiscal year end corresponds with the United States government's fiscal year. The Canadian government has amended their budgeting process to coincide with the Commission's fiscal year for years beginning October 1, 1982. Consequently, amounts budgeted for Canadian revenue and expense represent 50% of the March 31, 1982 Canadian fiscal year and the six-month interim period from April 1 to September 30, 1982.

Income taxes:

The Great Lakes Fishery Commission is exempt from U.S. income taxes under Sec. 501(c)(1) of the Internal Revenue Code, and from Canadian income taxes under Privy Council Order-in-Council #PC-1981-2359.

Interest and miscellaneous income:

The Commission has credited all interest and miscellaneous income to the Administration and General Research Fund in accordance with established financial regulations.

ANNUAL REPORT OF 1982

152

NOTES TO FINANCIAL STATEMENTS (Continued)

5

Note 2. INTERFUND TRANSFERS AND LIABILITIES

Unused funds from United States Fish and Wildlife Service and Canadian Department of Fisheries and Oceans are refunded to the Sea Lamprey Management and Research Fund and subsequently transferred to the Administration and General Research Fund. The total transfer to the Administration and General Research Fund for fiscal year ending September 30, 1982 consists of \$26,847 in United States refunds. Approximately \$55,000 in additional funds have been retained by the Canadian Department of Fisheries and Oceans for future barrier dam expenditures and is not included in the refund receivable as of September 30, 1982. A refund of \$18,660 is still receivable from the Canadian Department of Fisheries and Oceans for the year ended September 30, 1981.

Note 3. FUND BALANCE RESERVES

Commitments related to incomplete projects are recorded as reservations of fund balance. As of September 30, 1982, the Commission had the following commitments relating to specific projects which are to be funded by the Administration and General Research Fund.

			Expenditures	
		Expenditures	During	
	Total	Through	Year Ended	Reserved
Project Name	Budgeted	9-30-81	9-30-82	@ 9-30-82
SGLFMP	\$100,000	42,597	1,638	55,765
Brussard - 1979 project	13,937	10,453		3,484
Brussard - 1980 project	15,601	10,637		4,964
Monroe	10,550	2,540	500	7,510
Gorbman	53,250	17,750	17,750	17,750
Koonce - Lake Erie Perch Modeling	22,842	17,132		5,710
Allendorf - Allelic Frequency				
Divergence	5,305	3,979		1,326
Brussard - Overrun	7,590	5,693		1,897
Lampricide Impact Review	10,000			10,000
Spitz Review	5,000	812	521	3,667
Talhelm's Extra Market Values	7,200		3,963	3,237
Regier and Talhelm Ecosystem				
Workshop	6,000			6,000
Christie's Fish Archiving	4,125			4,125
Mathison's Acoustic Study on				
Sea Lamprey	2,500			2,500
Grima	8,064		5,830	2,234
Mallatt	2,340		1,755	585
Planning Process for Integrated				
Management of Sea Lamprey	5,000		682	4,318
Smith-Lamprey History and Typing	4,200			4,200
Smith Project Canadian Addendum	1,645			1,645
Spangler/Krueger - Genetic				
Analysis	20,293		15,220	5,073
Talhelm Study (Part of GLERR II)	15,000	5,588	1,566	7,846

б

Europe dit to a second

NOTES TO FINANCIAL STATEMENTS (Concluded)

Note 3. FUND BALANCE RESERVES (Concluded)

Project Name	Total Budgeted	Expenditures Through 9-30-81	Expenditures During Year Ended 9-30-82	Reserved @ 9-30-82
GLERR III Study Talhelm's National Fishing	\$ 50,000	3,664	21,300	25,036
Surveys	3,300			3,300
Volk's Aging Method	9,636			9,636
Auer's Larval Fish Manual	11,000			11,000
Talhelm's Phase II Angling	,			11,000
Report	2,550		765	1 705
Sower - Gorbman	5,106		705	1,785
IAGLR Bibliography	3,000			5,106
Socio-economic Workshop Planning	3,000			3,000
IPM Workshop	17,000		10,688	3,000
Lake Erie Workshop	17,500		10,754	6,312
CLAR Workshop	14,626			6,746
	\$457,160	120,845	275	14,351
	3457,100	120,845	93,207	243,108

Note 4. PENSION PLAN

The Commission contributes to the International Fishery Commissions' Pension Society, established in 1957, for all full-time employees/annuitants. The Commission's contribution was \$9,542 for the year ended September 30, 1982. There is no unfunded liability as of September 30, 1982.

Note 5. UNRESERVED FUND BALANCE DESIGNATIONS

The excess of expenditures over revenues budgeted for the fiscal year ending September 30, 1983 is to be funded by the fund balance in the Sea Lamprey Management and Research Fund. The budgeted excess of expenditures over revenues is approximately \$310,000 for the year ending September 30, 1983.

COMMITTEE MEMBERS-1982

Commissioners in Italics

BOARD OF TECHNICAL EXPERTS

CANADA

F. W. H. Beamish, Chm. W. J. Christie J. Cooley J. Donnan G. R. Francis A. P. Grima P. Ihssen H. A. Regier C. J. Walters

UNITED STATES N. Kevern J. L. Forney J. J. Magnuson P. J. Manion H. A. Purvis G. Spangler D. Talhelm

COUNCIL OF LAKE COMMITTEES

CANADA L. Affleck, V. Chm.

UNITED STATES W. A. Pearce, Chm.

Members are listed below under Lake Committees

LAKE COMMITTEES

LAKE HURON

R. M. Christie, Chm. D. Borgeson, V. Chm.

LAKE ONTARIO D. E. Gage, Chm. W. A. Pearce, V. Chm.

LAKE MICHIGAN B. Muench, Chm. W. James, V. Chm.

J. T. Addis D. Borgeson

LAKE SUPERIOR L. Affleck, Chm. J. T. Addis, V. Chm. D. Borgeson J. H. Kuehn

LAKE ERIE D. Graff, Chm. V. Milne, V. Chm. D. Borgeson R. Lange R. L. Scholl

GREAT LAKES FISH DISEASE CONTROL COMMITTEE

J. W. Warren, Chm. T. G. Carey, Secy. T. Amundson G. Armstrong D. Bumgarner J. M. Byrne J. B. Daily P. P. Economen D. B. Goldthwaite R. L. Gress

R. H. Griffiths J. R. Hammond J. G. Hnath R. W. Horner S. Huffaker C. Lakes V. A. Mudrak J. J. O'Grodnick L. Pettijohn P. J. Pfister

R. Poff R. W. Ritzert N. J. Robbins J. H. Schachte, Jr. H. J. Sippel S. F. Snieszko B. W. Souter W. Thompson R. A. Williamson